GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Earth System Science Data, Copernicus GmbH, Vol. 14, No. 7 ( 2022-07-25), p. 3379-3410
    Abstract: Abstract. Over the past 50 years, the British Antarctic Survey (BAS) has been one of the major acquirers of aerogeophysical data over Antarctica, providing scientists with gravity, magnetic, and radar datasets that have been central to many studies of the past, present, and future evolution of the Antarctic Ice Sheet. Until recently, many of these datasets were not openly available, restricting further usage of the data for different glaciological and geophysical applications. Starting in 2020, scientists and data managers at BAS have worked on standardizing and releasing large swaths of aerogeophysical data acquired during the period 1994–2020, including a total of 64 datasets from 24 different surveys, amounting to ∼ 450 000 line-km (or 5.3 million km2) of data across West Antarctica, East Antarctica, and the Antarctic Peninsula. Amongst these are the extensive surveys over the fast-changing Pine Island (BBAS 2004–2005) and Thwaites (ITGC 2018–2019 & 2019–2020) glacier catchments, and the first ever surveys of the Wilkes Subglacial Basin (WISE-ISODYN 2005–2006) and Gamburtsev Subglacial Mountains (AGAP 2007–2009). Considerable effort has been made to standardize these datasets to comply with the FAIR (findable, accessible, interoperable and re-usable) data principles, as well as to create the Polar Airborne Geophysics Data Portal (https://www.bas.ac.uk/project/nagdp/, last access: 18 July 2022), which serves as a user-friendly interface to interact with and download the newly published data. This paper reviews how these datasets were acquired and processed, presents the methods used to standardize them, and introduces the new data portal and interactive tutorials that were created to improve the accessibility of the data. Lastly, we exemplify future potential uses of the aerogeophysical datasets by extracting information on the continuity of englacial layering from the fully published airborne radar data. We believe these newly released data will be a valuable asset to future glaciological and geophysical studies over Antarctica and will significantly extend the life cycle of the data. All datasets included in this data release are now fully accessible at https://data.bas.ac.uk (British Antarctic Survey, 2022).
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Cryosphere, Copernicus GmbH, Vol. 11, No. 1 ( 2017-03-01), p. 653-668
    Abstract: Abstract. We present a compilation of radio-echo sounding (RES) measurements of five radar systems (AWI, BAS, CReSIS, INGV and UTIG) around the EPICA Dome C (EDC) drill site, East Antarctica. The aim of our study is to investigate the differences of the various systems in their resolution of internal reflection horizons (IRHs) and bed topography, penetration depth and capacity of imaging the basal layer. We address the questions of the compatibility of existing radar data for common interpretation and the suitability of the individual systems for reconnaissance surveys. We find that the most distinct IRHs and IRH patterns can be identified and transferred between most data sets. Considerable differences between the RES systems exist in range resolution and depiction of the bottom-most region. Considering both aspects, which we judge as crucial factors in the search for old ice, the CReSIS and the UTIG systems are the most suitable ones. In addition to the RES data set comparison we calculate a synthetic radar trace from EDC density and conductivity profiles. We identify 10 common IRHs in the measured RES data and the synthetic trace. We then conduct a sensitivity study for which we remove certain peaks from the input conductivity profile. As a result the respective reflections disappear from the modeled radar trace. In this way, we establish a depth conversion of the measured travel times of the IRHs. Furthermore, we use these sensitivity studies to investigate the cause of observed reflections. The identified IRHs are assigned ages from the EDC's timescale. Due to the isochronous character of these conductivity-caused IRHs, they are a means to extend the Dome C age structure by tracing the IRHs along the RES profiles.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Earth System Science Data, Copernicus GmbH, Vol. 15, No. 7 ( 2023-07-17), p. 2695-2710
    Abstract: Abstract. One of the key components of this research has been the mapping of Antarctic bed topography and ice thickness parameters that are crucial for modelling ice flow and hence for predicting future ice loss and the ensuing sea level rise. Supported by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action Group aims not only to produce new gridded maps of ice thickness and bed topography for the international scientific community, but also to standardize and make available all the geophysical survey data points used in producing the Bedmap gridded products. Here, we document the survey data used in the latest iteration, Bedmap3, incorporating and adding to all of the datasets previously used for Bedmap1 and Bedmap2, including ice bed, surface and thickness point data from all Antarctic geophysical campaigns since the 1950s. More specifically, we describe the processes used to standardize and make these and future surveys and gridded datasets accessible under the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles. With the goals of making the gridding process reproducible and allowing scientists to re-use the data freely for their own analysis, we introduce the new SCAR Bedmap Data Portal (https://bedmap.scar.org, last access: 1 March 2023) created to provide unprecedented open access to these important datasets through a web-map interface. We believe that this data release will be a valuable asset to Antarctic research and will greatly extend the life cycle of the data held within it. Data are available from the UK Polar Data Centre: https://data.bas.ac.uk (last access: 5 May 2023​​​​​​​). See the Data availability section for the complete list of datasets.
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Earth System Science Data Vol. 10, No. 2 ( 2018-04-09), p. 711-725
    In: Earth System Science Data, Copernicus GmbH, Vol. 10, No. 2 ( 2018-04-09), p. 711-725
    Abstract: Abstract. We present a new digital elevation model (DEM) of the bed, with a 1 km gridding, of the Weddell Sea (WS) sector of the West Antarctic Ice Sheet (WAIS). The DEM has a total area of ∼ 125 000 km2 covering the Institute, Möller and Foundation ice streams, as well as the Bungenstock ice rise. In comparison with the Bedmap2 product, our DEM includes new aerogeophysical datasets acquired by the Center for Remote Sensing of Ice Sheets (CReSIS) through the NASA Operation IceBridge (OIB) program in 2012, 2014 and 2016. We also improve bed elevation information from the single largest existing dataset in the region, collected by the British Antarctic Survey (BAS) Polarimetric radar Airborne Science Instrument (PASIN) in 2010–2011, from the relatively crude measurements determined in the field for quality control purposes used in Bedmap2. While the gross form of the new DEM is similar to Bedmap2, there are some notable differences. For example, the position and size of a deep subglacial trough (∼ 2 km below sea level) between the ice-sheet interior and the grounding line of the Foundation Ice Stream have been redefined. From the revised DEM, we are able to better derive the expected routing of basal water and, by comparison with that calculated using Bedmap2, we are able to assess regions where hydraulic flow is sensitive to change. Given the potential vulnerability of this sector to ocean-induced melting at the grounding line, especially in light of the improved definition of the Foundation Ice Stream trough, our revised DEM will be of value to ice-sheet modelling in efforts to quantify future glaciological changes in the region and, from this, the potential impact on global sea level. The new 1 km bed elevation product of the WS sector can be found at https://doi.org/10.5281/zenodo.1035488.
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  The Cryosphere Vol. 16, No. 4 ( 2022-04-27), p. 1469-1482
    In: The Cryosphere, Copernicus GmbH, Vol. 16, No. 4 ( 2022-04-27), p. 1469-1482
    Abstract: Abstract. Basal melt of ice shelves is a key factor governing discharge of ice from the Antarctic Ice Sheet as a result of its effects on buttressing. Here, we use radio echo sounding to determine the spatial variability of the basal melt rate of the southern Filchner Ice Shelf, Antarctica, along the inflow of Support Force Glacier. We find moderate melt rates with a maximum of 1.13 m a−1 about 50 km downstream of the grounding line. The variability of the melt rates over distances of a few kilometres is low (all but one 〈 0.15 m a−1 at 〈 2 km distance), indicating that measurements on coarse observational grids are able to yield a representative melt rate distribution. A comparison with remote-sensing-based melt rates revealed that, for the study area, large differences were due to inaccuracies in the estimation of vertical strain rates from remote sensing velocity fields. These inaccuracies can be overcome by using modern velocity fields.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: The Cryosphere, Copernicus GmbH, Vol. 16, No. 10 ( 2022-10-10), p. 4107-4139
    Abstract: Abstract. Ice shelves play a key role in the stability of the Antarctic Ice Sheet due to their buttressing effect. A loss of buttressing as a result of increased basal melting or ice shelf disintegration will lead to increased ice discharge. Some ice shelves exhibit channels at the base that are not yet fully understood. In this study, we present in situ melt rates of a channel which is up to 330 m high and located in the southern Filchner Ice Shelf. Maximum observed melt rates are 2 m yr−1. Melt rates inside the channel decrease in the direction of ice flow and turn to freezing ∼55 km downstream of the grounding line. While closer to the grounding line melt rates are higher within the channel than outside, this relationship reverses further downstream. Comparing the modeled evolution of this channel under present-day climate conditions over 250 years with its present geometry reveals a mismatch. Melt rates twice as large as the present-day values are required to fit the observed geometry. In contrast, forcing the model with present-day melt rates results in a closure of the channel, which contradicts observations. The ice shelf experiences strong tidal variability in vertical strain rates at the measured site, and discrete pulses of increased melting occurred throughout the measurement period. The type of melt channel in this study diminishes in height with distance from the grounding line and is hence not a destabilizing factor for ice shelves.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The Cryosphere, Copernicus GmbH, Vol. 11, No. 4 ( 2017-08-14), p. 1897-1911
    Abstract: Abstract. A high-resolution (1 km line spacing) aerogeophysical survey was conducted over a region near the East Antarctic Ice Sheet's Dome C that may hold a 1.5 Myr climate record. We combined new ice thickness data derived from an airborne coherent radar sounder with unpublished data that was in part unavailable for earlier compilations, and we were able to remove older data with high positional uncertainties. We generated a revised high-resolution digital elevation model (DEM) to investigate the potential for an old ice record in this region, and used laser altimetry to confirm a Cryosat-2 derived DEM for inferring the glaciological state of the candidate area. By measuring the specularity content of the bed, we were able to find an additional 50 subglacial lakes near the candidate site, and by Doppler focusing the radar data, we were able to map out the roughness of the bed at length scales of hundreds of meters. We find that the primary candidate region contains elevated rough topography interspersed with scattered subglacial lakes and some regions of smoother bed. Free subglacial water appears to be restricted from bed overlain by ice thicknesses of less than 3000 m. A site near the ice divide was selected for further investigation. The high resolution of this ice thickness data set also allows us to explore the nature of ice thickness uncertainties in the context of radar geometry and processing.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Earth System Science Data, Copernicus GmbH, Vol. 9, No. 2 ( 2017-11-20), p. 849-860
    Abstract: Abstract. We present a compilation of GPS time series, including those for previously unpublished sites, showing that flow across the entire Ronne Ice Shelf and its adjoining ice streams is strongly affected by ocean tides. Previous observations have shown strong horizontal diurnal and semidiurnal motion of the ice shelf, and surface flow speeds of Rutford Ice Stream (RIS) are known to vary with a fortnightly (Msf) periodicity. Our new data set shows that the Msf flow modulation, first observed on RIS, is also found on Evans, Talutis, Institute, and Foundation ice streams, i.e. on all ice streams for which data are available. The amplitude of the Msf signal increases downstream of grounding lines, reaching up to 20 % of mean flow speeds where ice streams feed into the main ice shelf. Upstream of ice stream grounding lines, decay length scales are relatively uniform for all ice streams but the speed at which the Msf signal propagates upstream shows more variation. Observations and modelling of tidal variations in ice flow can help constrain crucial parameters that determine the rate and extent of potential ice mass loss from Antarctica. Given that the Msf modulation in ice flow is readily observed across the entire region at distances of up to 80 km upstream of grounding lines, but is not completely reproduced in any existing numerical model, this new data set suggests a pressing need to identify the missing processes responsible for its generation and propagation. The new GPS data set is publicly available through the UK Polar Data Centre at http://doi.org/10.5285/4fe11286-0e53-4a03-854c-a79a44d1e356.
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...