GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 9, No. 9 ( 2009-05-13), p. 3075-3093
    Abstract: Abstract. This paper describes a modelling study of several HOx and NOx species (OH, HO2, organic peroxy radicals, NO3 and N2O5) in the marine boundary layer. A model based upon the Master Chemical Mechanism (MCM) was constrained to observations of chemical and physical parameters made onboard the NOAA ship R/V Brown as part of the New England Air Quality Study (NEAQS) in the summer of 2004. The model was used to calculate [OH] and to determine the composition of the peroxy radical pool. Modelled [NO3] and [N2O5] were compared to in-situ measurements by Cavity Ring-Down Spectroscopy. The comparison showed that the model generally overestimated the measurements by 30–50%, on average. The model results were analyzed with respect to several chemical and physical parameters, including uptake of NO3 and N2O5 on fog droplets and on aerosol, dry deposition of NO3 and N2O5, gas-phase hydrolysis of N2O5 and reactions of NO3 with NMHCs and peroxy radicals. The results suggest that fog, when present, is an important sink for N2O5 via rapid heterogeneous uptake. The comparison between the model and the measurements were consistent with values of the heterogeneous uptake coefficient of N2O5 (γN2O5)〉1×10−2, independent of aerosol composition in this marine environment. The analysis of the different loss processes of the nitrate radical showed the important role of the organic peroxy radicals, which accounted for a significant fraction (median: 15%) of NO3 gas-phase removal, particularly in the presence of high concentrations of dimethyl sulphide (DMS).
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2009
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 14, No. 3 ( 2014-02-05), p. 1337-1352
    Abstract: Abstract. Emissions factors (EFs) for gas and sub-micron particle-phase species were measured in intercepted plumes as a function of vessel speed from an underway research vessel, the NOAA ship Miller Freeman, operating a medium-speed diesel engine on low-sulfur marine gas oil (fuel sulfur content ~0.1% by weight). The low-sulfur fuel in use conforms to the MARPOL fuel sulfur limit within emission control areas set to take effect in 2015 and to California-specific limits set to take effect in 2014. For many of the particle-phase species, EFs were determined using multiple measurement methodologies, allowing for an assessment of how well EFs from different techniques agree. The total sub-micron PM (PM1) was dominated by particulate black carbon (BC) and particulate organic matter (POM), with an average POM / BC ratio of 1.3. Consideration of the POM / BC ratios observed here with literature studies suggests that laboratory and in-stack measurement methods may overestimate primary POM EFs relative to those observed in emitted plumes. Comparison of four different methods for black carbon measurement indicates that careful attention must be paid to instrument limitations and biases when assessing EFBC. Particulate sulfate (SO42−) EFs were extremely small and the particles emitted by Miller Freeman were inefficient as cloud condensation nuclei (CCN), even at high super saturations, consistent with the use of very low-sulfur fuel and the overall small emitted particle sizes. All measurement methodologies consistently demonstrate that the measured EFs (fuel mass basis) for PM1 mass, BC and POM decreased as the ship slowed. Particle number EFs were approximately constant across the speed change, with a shift towards smaller particles being emitted at slower speeds. Emissions factors for gas-phase CO and formaldehyde (HCHO) both increased as the vessel slowed, while EFs for NOx decreased and SO2 EFs were approximately constant.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2014
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 11, No. 10 ( 2011-05-31), p. 5079-5097
    Abstract: Abstract. Dimethylsulfide (DMS) emitted from the ocean is a biogenic precursor gas for sulfur dioxide (SO2) and non-sea-salt sulfate aerosols (SO42−). During the VAMOS-Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in 2008, multiple instrumented platforms were deployed in the Southeastern Pacific (SEP) off the coast of Chile and Peru to study the linkage between aerosols and stratocumulus clouds. We present here observations from the NOAA Ship Ronald H. Brown and the NSF/NCAR C-130 aircraft along ~20° S from the coast (70° W) to a remote marine atmosphere (85° W). While SO42− and SO2 concentrations were distinctly elevated above background levels in the coastal marine boundary layer (MBL) due to anthropogenic influence (~800 and 80 pptv, respectively), their concentrations rapidly decreased west of 78° W (~100 and 25 pptv). In the remote region, entrainment from the free troposphere (FT) increased MBL SO2 burden at a rate of 0.05 ± 0.02 μmoles m−2 day−1 and diluted MBL SO42 burden at a rate of 0.5 ± 0.3 μmoles m−2 day−1, while the sea-to-air DMS flux (3.8 ± 0.4 μmoles m−2 day−1) remained the predominant source of sulfur mass to the MBL. In-cloud oxidation was found to be the most important mechanism for SO2 removal and in situ SO42− production. Surface SO42− concentration in the remote MBL displayed pronounced diel variability, increasing rapidly in the first few hours after sunset and decaying for the rest of the day. We theorize that the increase in SO42− was due to nighttime recoupling of the MBL that mixed down cloud-processed air, while decoupling and sporadic precipitation scavenging were responsible for the daytime decline in SO42−.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2011
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...