GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus GmbH  (4)
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Natural Hazards and Earth System Sciences Vol. 18, No. 12 ( 2018-11-30), p. 3187-3201
    In: Natural Hazards and Earth System Sciences, Copernicus GmbH, Vol. 18, No. 12 ( 2018-11-30), p. 3187-3201
    Abstract: Abstract. One or several aspects of the source, distribution, transport, and optical properties of airborne dust have been characterized using different types of satellite and ground measurements, each with unique advantages. In this study, a dust event that occurred over the East Asia area in May 2017 was exemplified to demonstrate how all the above-mentioned aspects of a dust event can be pictured by combining the advantages of different satellite and ground measurements. The data used included the Himawari-8 satellite Advanced Himawari Imager (AHI) true-colour images, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol vertical profiles, the Aura satellite Ozone Monitoring Instrument (OMI) aerosol index images, and the ground-based Aerosol Robotic Network (AERONET) aerosol properties and the ground station particulate matter (PM) measurements. From the multi-satellite/sensor (AHI, CALIOP, and OMI) time series observations, the dust storm was found to originate from the Gobi Desert on the morning of 3 May 2017 and transport north-eastward to the Bering Sea, eastward to the Korean Peninsula and Japan, and southward to south-central China. The air quality in China deteriorated drastically: the PM10 (PM 〈 10 µm in aerodynamic diameter) concentrations measured at some air quality stations located in northern China reached 4333 µg m−3. At the AOE_Baotou, Beijing, Xuzhou-CUMT, and Ussuriysk AERONET sites, the maximum aerosol optical depth values reached 2.96, 2.13, 2.87, and 0.65 and the extinction Ångström exponent dropped to 0.023, 0.068, 0.03, and 0.097, respectively. The dust storm also induced unusual aerosol spectral single-scattering albedo and volume size distribution.
    Type of Medium: Online Resource
    ISSN: 1684-9981
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2069216-X
    detail.hit.zdb_id: 2064587-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 18 ( 2019-09-20), p. 11701-11719
    Abstract: Abstract. Guangdong Province (GD), one of the most prosperous and populous regions in China, still experiences haze events and growing ozone pollution in spite of the substantial air-quality improvement in recent years. Integrated control of fine particulate matter (PM2.5) and ozone in GD calls for a systematic review of historical emissions. In this study, emission trends, spatial variations, source-contribution variations, and reduction potentials of sulfur dioxide (SO2), nitrogen oxides (NOx), PM2.5, inhalable particles (PM10), carbon monoxide (CO), ammonia (NH3), and volatile organic compounds (VOCs) in GD from 2006 to 2015 were first examined using a dynamic methodology, taking into account economic development, technology penetration, and emission controls. The relative change rates of anthropogenic emissions in GD during 2006–2015 are −48 % for SO2, −0.5 % for NOx, −16 % for PM2.5, −22 % for PM10, 13 % for CO, 3 % for NH3, and 13 % for VOCs. The declines of SO2, NOx, PM2.5, and PM10 emissions in the whole province mainly resulted from the stringent emission control in the Pearl River delta (PRD) region, where most previous control measures were focused, especially on power plants (SO2 and NOx), industrial combustion (SO2, PM2.5, PM10), on-road mobile sources (NOx), and dust sources (PM2.5 and PM10). Emissions from other areas (non-PRD, NPRD), nevertheless, remain relatively stable due to the lax control measures and rapidly growing energy consumption. In addition, emission leaks of SO2 and NOx from industries are observed from PRD to NPRD in 2010 and 2011. As a result, emissions in NPRD are increasingly important in GD, particularly those from industrial combustion. The contribution of NPRD to the total SO2 emissions in GD, for example, increased from 27 % in 2006 to 48 % in 2015. On-road mobile sources and solvent use are the two key sources that should receive more effective control measures in GD. Current control-driven emission reductions from on-road mobile sources are neutralized by the substantial growth of the vehicle population, while VOC emissions in GD steadily increase due to the growth of solvent use and the absence of effective control measures. Besides, future work could focus on power plants and industrial combustion in GD and industrial process sources in NPRD, which still have large emission reduction potentials. The historical emission inventory developed in this study not only helps to understand the emission evolution in GD, but also provides robust data to quantify the impact of emission and meteorology variations on air quality and unveil the primary cause of significant air-quality change in GD in the recent decade.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Atmospheric Chemistry and Physics Vol. 16, No. 15 ( 2016-08-02), p. 9655-9674
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 16, No. 15 ( 2016-08-02), p. 9655-9674
    Abstract: Abstract. One of four main focus areas of the PEEX initiative is to establish and sustain long-term, continuous, and comprehensive ground-based, airborne, and seaborne observation infrastructure together with satellite data. The Advanced Along-Track Scanning Radiometer (AATSR) aboard ENVISAT is used to observe the Earth in dual view. The AATSR data can be used to retrieve aerosol optical depth (AOD) over both land and ocean, which is an important parameter in the characterization of aerosol properties. In recent years, aerosol retrieval algorithms have been developed both over land and ocean, taking advantage of the features of dual view, which can help eliminate the contribution of Earth's surface to top-of-atmosphere (TOA) reflectance. The Aerosol_cci project, as a part of the Climate Change Initiative (CCI), provides users with three AOD retrieval algorithms for AATSR data, including the Swansea algorithm (SU), the ATSR-2ATSR dual-view aerosol retrieval algorithm (ADV), and the Oxford-RAL Retrieval of Aerosol and Cloud algorithm (ORAC). The validation team of the Aerosol-CCI project has validated AOD (both Level 2 and Level 3 products) and AE (Ångström Exponent) (Level 2 product only) against the AERONET data in a round-robin evaluation using the validation tool of the AeroCOM (Aerosol Comparison between Observations and Models) project. For the purpose of evaluating different performances of these three algorithms in calculating AODs over mainland China, we introduce ground-based data from CARSNET (China Aerosol Remote Sensing Network), which was designed for aerosol observations in China. Because China is vast in territory and has great differences in terms of land surfaces, the combination of the AERONET and CARSNET data can validate the L2 AOD products more comprehensively. The validation results show different performances of these products in 2007, 2008, and 2010. The SU algorithm performs very well over sites with different surface conditions in mainland China from March to October, but it slightly underestimates AOD over barren or sparsely vegetated surfaces in western China, with mean bias error (MBE) ranging from 0.05 to 0.10. The ADV product has the same precision with a low root mean square error (RMSE) smaller than 0.2 over most sites and the same error distribution as the SU product. The main limits of the ADV algorithm are underestimation and applicability; underestimation is particularly obvious over the sites of Datong, Lanzhou, and Urumchi, where the dominant land cover is grassland, with an MBE larger than 0.2, and the main aerosol sources are coal combustion and dust. The ORAC algorithm has the ability to retrieve AOD at different ranges, including high AOD (larger than 1.0); however, the stability deceases significantly with increasing AOD, especially when AOD 〉 1.0. In addition, the ORAC product is consistent with the CARSNET product in winter (December, January, and February), whereas other validation results lack matches during winter.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 20 ( 2019-10-18), p. 12901-12916
    Abstract: Abstract. China is experiencing increasingly serious ambient ozone pollution, including the economically developed Pearl River Delta (PRD) region. However, the underlying reasons for the ozone increase remain largely unclear, leading to perplexity regarding formulating effective ozone control strategies. In this study, we quantitatively examine the impacts of meteorology and precursor emissions from within and outside of the PRD on the evolution of ozone during the past decade by developing a statistical analysis framework combining meteorological adjustment and source apportionment. We found that meteorological conditions mitigated ozone increase, and that their variation can account for a maximum of 15 % of the annual ozone concentration in the PRD. Precursor emissions from outside the PRD (“nonlocal”) have the largest contribution to ambient ozone in the region and show a consistently increasing trend, whereas emissions from within the PRD (“local”) show a significant spatial heterogeneity and play a more important role during ozone episodes over the southwest of the region. Under general conditions, the impact on the northeastern PRD is positive but decreasing, and in the southwest it is negative but increasing. During ozone episodes, the impact on the northeastern PRD is negative and decreasing, whereas in the southwestern PRD it is positive but decreasing. The central and western PRD are the only areas with an increasing local ozone contribution. The spatial heterogeneity in both the local ozone contribution and its trend under general conditions and during ozone episodes is well interpreted by a conceptual diagram that collectively takes ozone precursor emissions and their changing trends, ozone formation regimes, and the monsoonal and microscale synoptic conditions over different subregions of the PRD into consideration. In particular, we conclude that an inappropriate NOx∕VOC control ratio within the PRD over the past few years is most likely responsible for the ozone increase over southwest of this region, both under general conditions and during ozone episodes. By investigating the ozone evolution influenced by emission changes within and outside of the PRD during the past decade, this study highlights the importance of establishing a dichotomous ozone control strategy to tackle general conditions and pollution events separately. NOx emission control should be further strengthened to alleviate the peak ozone level during episodes. Detailed investigation is needed to retrieve appropriate NOx∕VOC ratios for different emission and meteorological conditions, so as to maximize the ozone reduction efficiency in the PRD.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...