GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus GmbH  (12)
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 9 ( 2022-05-05), p. 5925-5942
    Abstract: Abstract. Thunderstorms can significantly influence the air composition via strong updraft and lightning nitrogen oxides (LNOx). In this study, the ozonesondes and TROPOMI (TROPOspheric Monitoring Instrument) nitrogen dioxide (NO2) observations for two cases are combined with a model to investigate the effects of typical strong convection on vertical redistribution of air pollutants in Nanjing, southeastern China. The ozonesonde observations show higher O3 and water vapor mixing ratios in the upper troposphere (UT) after convection, indicating the strong updraft transporting lower-level air masses into the UT and the possible downward O3-rich air near the top of UT over the convective period. During the whole convection life cycle, the UT O3 production is driven by the chemistry (5–10 times the magnitude of dynamic contribution) and reduced by the LNOx (−40 %). Sensitivity tests demonstrate that neglecting LNOx in standard TROPOMI NO2 products causes overestimated air mass factors over fresh lightning regions and the opposite for outflow and aged lightning areas. Therefore, a new high-resolution retrieval algorithm is applied to estimate the LNOx production efficiency. Our work shows the demand for high-resolution modeling and satellite observations on LNOx emissions of both active and dissipated convection, especially small-scale storms.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 21 ( 2021-11-04), p. 16183-16201
    Abstract: Abstract. Organic aerosol (OA) is a major component of tropospheric submicron aerosol that contributes to air pollution and causes adverse effects on human health. Chemical transport models have difficulties in reproducing the variability in OA concentrations in polluted areas, hindering understanding of the OA budget and sources. Herein, we apply both process-based and observation-constrained schemes to simulate OA in GEOS-Chem. Comprehensive data sets of surface OA, OA components, secondary organic aerosol (SOA) precursors, and oxidants were used for model–observation comparisons. The base models generally underestimate the SOA concentrations in China. In the revised schemes, updates were made on the emissions, volatility distributions, and SOA yields of semivolatile and intermediate-volatility organic compounds (SVOCs and IVOCs) and additional nitrous acid sources. With all the model improvements, both the process-based and observation-constrained SOA schemes can reproduce the observed mass concentrations of SOA and show spatial and seasonal consistency with each other. Our best model simulations suggest that anthropogenic SVOCs and IVOCs are the dominant source of SOA, with a contribution of over 50 % in most of China, which should be considered for pollution mitigation in the future. The residential sector may be the predominant source of SVOCs and IVOCs in winter, despite large uncertainty remaining in the emissions of IVOCs from the residential sector in northern China. The industry sector is also an important source of IVOCs, especially in summer. More SVOC and IVOC measurements are needed to constrain their emissions. Besides, the results highlight the sensitivity of SOA to hydroxyl radical (OH) levels in winter in polluted environments. The addition of nitrous acid sources can lead to over 30 % greater SOA mass concentrations in winter in northern China. It is important to have good OH simulations in air quality models.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Atmospheric Chemistry and Physics Vol. 18, No. 20 ( 2018-10-23), p. 15219-15229
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 20 ( 2018-10-23), p. 15219-15229
    Abstract: Abstract. Health effects of exposure to fine particulate matter (PM2.5) in India were estimated in this study based on a source-oriented version of the Community Multi-scale Air Quality (CMAQ) model. Contributions of different sources to premature mortality and years of life lost (YLL) were quantified in 2015. Premature mortality due to cerebrovascular disease (CEVD) was the highest in India (0.44 million), followed by ischaemic heart disease (IHD, 0.40 million), chronic obstructive pulmonary disease (COPD, 0.18 million), and lung cancer (LC, 0.01 million), with a total of 1.04 million deaths. The states with highest premature mortality were Uttar Pradesh (0.23 million), Bihar (0.12 million), and West Bengal (0.10 million). The highest total YLL was 2 years in Delhi, and the Indo-Gangetic plains and eastern India had higher YLL (∼1 years) than other regions. The residential sector was the largest contributor to PM2.5 concentrations (∼40 µg m−3), total premature mortality (0.58 million), and YLL (∼0.2 years). Other important sources included industry (∼20 µg m−3), agriculture (∼10 µg m−3), and energy (∼5 µg m−3) with their national averaged contributions of 0.21, 0.12, and 0.07 million to premature mortality, and 0.12, 0.1, and 0.05 years to YLL. Reducing PM2.5 concentrations would lead to a significant reduction of premature mortality and YLL. For example, premature mortality in Uttar Pradesh (including Delhi) due to PM2.5 exposures would be reduced by 79 % and YLL would be reduced by 83 % when reducing PM2.5 concentrations to 10 µg m−3.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 8 ( 2022-04-26), p. 5495-5514
    Abstract: Abstract. PM2.5, generated via both direct emission and secondary formation, can have varying environmental impacts due to different physical and chemical properties of its components. However, traditional methods to quantify different PM2.5 components are often based on online or offline observations and numerical models, which are generally high economic cost- or labor-intensive. In this study, we develop a new method, named Multi-Tracer Estimation Algorithm (MTEA), to identify the primary and secondary components from routine observation of PM2.5. By comparing with long-term and short-term measurements of aerosol chemical components in China and the United States, it is proven that MTEA can successfully capture the magnitude and variation of the primary PM2.5 (PPM) and secondary PM2.5 (SPM). Applying MTEA to the China National Air Quality Network, we find that (1) SPM accounted for 63.5 % of the PM2.5 in cities in southern China on average during 2014–2018, while the proportion dropped to 57.1 % in the north of China, and at the same time the secondary proportion in regional background regions was ∼ 19 % higher than that in populous regions; (2) the summertime secondary PM2.5 proportion presented a slight but consistent increasing trend (from 58.5 % to 59.2 %) in most populous cities, mainly because of the recent increase in O3 pollution in China; (3) the secondary PM2.5 proportion in Beijing significantly increased by 34 % during the COVID-19 lockdown, which might be the main reason for the observed unexpected PM pollution in this special period; and finally, (4) SPM and O3 showed similar positive correlations in the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions, but the correlations between total PM2.5 and O3 in these two regions, as determined from PPM levels, were quite different. In general, MTEA is a promising tool for efficiently estimating PPM and SPM, and has huge potential for future PM mitigation.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 1 ( 2019-01-11), p. 447-458
    Abstract: Abstract. Refractory black carbon (BC) is a product of incomplete combustion of fossil fuel, biomass and biofuel, etc. By mixing with other species, BC can play significant roles in climate change, visibility impairment and human health. Such BC-containing particles in densely populated megacities like Beijing may have specific sources and properties that are important to haze formation and air quality. In this work, we exclusively characterized the BC-containing particles in urban Beijing by using a laser-only Aerodyne soot particle aerosol mass spectrometer (SP-AMS), as part of the Atmospheric Pollution & Human Health (APHH) 2016 winter campaign. The average mass ratio of coating to BC core (RBC) was found to be ∼5.0. Positive matrix factorization shows the presence of significant primary fossil fuel and biomass-burning organics (64 % of total organics). Yet secondary species, including sulfate, nitrate and oxygenated organic aerosol (OA) species, could have significant impacts on the properties of BC-containing particles, especially for ones with larger BC core sizes and thicker coatings. Analyses of sources and diurnal cycles of organic coating reveal significant afternoon photochemical production of secondary OA (SOA), as well as nighttime aqueous production of a portion of highly oxygenated OA. Besides SOA, photochemical production of nitrate, not sulfate, appeared to be important. Further investigations on BC-containing particles during different periods show that, on average, more polluted periods would have more contributions from secondary species and more thickly coated BC tended to associate with more secondary species, indicating the important role of chemical aging to the pollution of BC-containing particles in urban Beijing during wintertime. However, for individual pollution events, primary species (fossil fuel, coal and biomass-burning emissions) could also play a dominant role, as revealed by the compositions of BC-containing particles in two polluted episodes during the sampling period.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Atmospheric Chemistry and Physics Vol. 16, No. 16 ( 2016-08-16), p. 10333-10350
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 16, No. 16 ( 2016-08-16), p. 10333-10350
    Abstract: Abstract. China has been experiencing severe air pollution in recent decades. Although an ambient air quality monitoring network for criteria pollutants has been constructed in over 100 cities since 2013 in China, the temporal and spatial characteristics of some important pollutants, such as particulate matter (PM) components, remain unknown, limiting further studies investigating potential air pollution control strategies to improve air quality and associating human health outcomes with air pollution exposure. In this study, a yearlong (2013) air quality simulation using the Weather Research and Forecasting (WRF) model and the Community Multi-scale Air Quality (CMAQ) model was conducted to provide detailed temporal and spatial information of ozone (O3), total PM2.5, and chemical components. Multi-resolution Emission Inventory for China (MEIC) was used for anthropogenic emissions and observation data obtained from the national air quality monitoring network were collected to validate model performance. The model successfully reproduces the O3 and PM2.5 concentrations at most cities for most months, with model performance statistics meeting the performance criteria. However, overprediction of O3 generally occurs at low concentration range while underprediction of PM2.5 happens at low concentration range in summer. Spatially, the model has better performance in southern China than in northern China, central China, and Sichuan Basin. Strong seasonal variations of PM2.5 exist and wind speed and direction play important roles in high PM2.5 events. Secondary components have more boarder distribution than primary components. Sulfate (SO42−), nitrate (NO3−), ammonium (NH4+), and primary organic aerosol (POA) are the most important PM2.5 components. All components have the highest concentrations in winter except secondary organic aerosol (SOA). This study proves the ability of the CMAQ model to reproduce severe air pollution in China, identifies the directions where improvements are needed, and provides information for human exposure to multiple pollutants for assessing health effects.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 13, No. 10 ( 2020-10-08), p. 4809-4829
    Abstract: Abstract. With semiconductor technology gradually approaching its physical and thermal limits, recent supercomputers have adopted major architectural changes to continue increasing the performance through more power-efficient heterogeneous many-core systems. Examples include Sunway TaihuLight that has four management processing elements (MPEs) and 256 computing processing elements (CPEs) inside one processor and Summit that has two central processing units (CPUs) and six graphics processing units (GPUs) inside one node. Meanwhile, current high-resolution Earth system models that desperately require more computing power generally consist of millions of lines of legacy code developed for traditional homogeneous multicore processors and cannot automatically benefit from the advancement of supercomputer hardware. As a result, refactoring and optimizing the legacy models for new architectures become key challenges along the road of taking advantage of greener and faster supercomputers, providing better support for the global climate research community and contributing to the long-lasting societal task of addressing long-term climate change. This article reports the efforts of a large group in the International Laboratory for High-Resolution Earth System Prediction (iHESP) that was established by the cooperation of Qingdao Pilot National Laboratory for Marine Science and Technology (QNLM), Texas A&M University (TAMU), and the National Center for Atmospheric Research (NCAR), with the goal of enabling highly efficient simulations of the high-resolution (25 km atmosphere and 10 km ocean) Community Earth System Model (CESM-HR) on Sunway TaihuLight. The refactoring and optimizing efforts have improved the simulation speed of CESM-HR from 1 SYPD (simulation years per day) to 3.4 SYPD (with output disabled) and supported several hundred years of pre-industrial control simulations. With further strategies on deeper refactoring and optimizing for remaining computing hotspots, as well as redesigning architecture-oriented algorithms, we expect an equivalent or even better efficiency to be gained on the new platform than traditional homogeneous CPU platforms. The refactoring and optimizing processes detailed in this paper on the Sunway system should have implications for similar efforts on other heterogeneous many-core systems such as GPU-based high-performance computing (HPC) systems.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 8 ( 2017-04-26), p. 5379-5391
    Abstract: Abstract. Organic aerosol (OA) is a major constituent of ultrafine particulate matter (PM0. 1). Recent epidemiological studies have identified associations between PM0. 1 OA and premature mortality and low birth weight. In this study, the source-oriented UCD/CIT model was used to simulate the concentrations and sources of primary organic aerosols (POA) and secondary organic aerosols (SOA) in PM0. 1 in California for a 9-year (2000–2008) modeling period with 4 km horizontal resolution to provide more insights about PM0. 1 OA for health effect studies. As a related quality control, predicted monthly average concentrations of fine particulate matter (PM2. 5) total organic carbon at six major urban sites had mean fractional bias of −0.31 to 0.19 and mean fractional errors of 0.4 to 0.59. The predicted ratio of PM2. 5 SOA ∕ OA was lower than estimates derived from chemical mass balance (CMB) calculations by a factor of 2–3, which suggests the potential effects of processes such as POA volatility, additional SOA formation mechanism, and missing sources. OA in PM0. 1, the focus size fraction of this study, is dominated by POA. Wood smoke is found to be the single biggest source of PM0. 1 OA in winter in California, while meat cooking, mobile emissions (gasoline and diesel engines), and other anthropogenic sources (mainly solvent usage and waste disposal) are the most important sources in summer. Biogenic emissions are predicted to be the largest PM0. 1 SOA source, followed by mobile sources and other anthropogenic sources, but these rankings are sensitive to the SOA model used in the calculation. Air pollution control programs aiming to reduce the PM0. 1 OA concentrations should consider controlling solvent usage, waste disposal, and mobile emissions in California, but these findings should be revisited after the latest science is incorporated into the SOA exposure calculations. The spatial distributions of SOA associated with different sources are not sensitive to the choice of SOA model, although the absolute amount of SOA can change significantly. Therefore, the spatial distributions of PM0. 1 POA and SOA over the 9-year study period provide useful information for epidemiological studies to further investigate the associations with health outcomes.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Biogeosciences, Copernicus GmbH, Vol. 13, No. 16 ( 2016-08-23), p. 4735-4750
    Abstract: Abstract. Despite a multitude of studies, overall erosion rates as well as the contribution of different erosion processes on Chinese Loess Plateau (CLP) remain uncertain, which hampers a correct assessment of the impact of soil erosion on carbon and nutrient cycling as well as on crop productivity. In this paper we used a novel approach, based on field evidence, to reassess erosion rates on the CLP before and after conservation measures were implemented (1950 vs. 2005). We found that current average topsoil erosion rates are 3 to 9 times lower than earlier estimates suggested. Under 2005 conditions, more sediment was produced by non-topsoil erosion (gully erosion (0.23 ± 0.28 Gt yr−1) and landsliding (0.28 ± 0.23 Gt yr−1) combined) than by topsoil erosion (ca. 0.30 ± 0.08 Gt yr−1). Overall, these erosion processes mobilized ca. 4.77 ± 1.96 Tg yr−1 of soil organic carbon (SOC): the latter number sets the maximum magnitude of the erosion-induced carbon sink, which is ca. 4 times lower than one other recent estimate suggests. The programs implemented from the 1950s onwards reduced topsoil erosion from 0.51 ± 0.13 to 0.30 ± 0.08 Gt yr−1 while SOC mobilization was reduced from 7.63 ± 3.52 to 4.77 ± 1.96 Tg C yr−1. Conservation efforts and reservoir construction have disrupted the equilibrium that previously existed between sediment and SOC mobilization on the one hand and sediment and SOC export to the Bohai sea on the other hand: nowadays, most eroded sediments and carbon are stored on land. Despite the fact that average topsoil losses on the CLP are still relatively high, a major increase in agricultural productivity has occurred since 1980. Fertilizer application rates nowadays more than compensate for the nutrient losses by (topsoil) erosion: this was likely not the case before the dramatic rise of fertilizer use that started around 1980. Hence, erosion is currently not a direct threat to agricultural productivity on the CLP but the long-term effects of erosion on soil quality remain important.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 14 ( 2021-07-29), p. 11405-11421
    Abstract: Abstract. Light absorption and radiative forcing of black carbon (BC) is influenced by both BC itself and its interactions with other aerosol chemical compositions. Although the changes in BC concentrations in response to emission reduction measures have been well documented, the influence of emission reductions on the light absorption properties of BC and its influence on BC-boundary-layer interactions has been less explored. In this study, we used the online coupled WRF-Chem model to examine how emission control measures during the Asia-Pacific Economic Cooperation (APEC) summit affect the mixing state and light absorption of BC, and the associated implications for BC-PBL interactions. We found that both the mass concentration of BC and the BC coating materials declined during the APEC week, which reduced the light absorption and light absorption enhancement (Eab) of BC. The reduced absorption aerosol optical depth (AAOD) during APEC was caused by both the decline in the mass concentration of BC itself (52.0 %), and the lensing effect of BC (48.0 %). The reduction in coating materials (39.4 %) contributed the most to the influence of the lensing effect, and the reduced light absorption capability (Eab) contributed 3.2 % to the total reduction in AAOD. Reduced light absorption of BC due to emission control during APEC enhanced planetary boundary layer height (PBLH) by 8.2 m. PM2.5 and O3 were found to have different responses to the changes in the light absorption of BC. Reduced light absorption of BC due to emission reductions decreased near-surface PM2.5 concentrations but near-surface O3 concentrations were enhanced in the North China Plain. These results suggest that current measures to control SO2, NOx, etc. would be effective in reducing the absorption enhancement of BC and in inhibiting the feedback of BC on the boundary layer. However, enhanced ground O3 might be a side effect of current emission control strategies. How to control emissions to offset this side effect of current emission control measures on O3 should be an area of further focus.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...