GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 15, No. 7 ( 2022-04-08), p. 2973-3020
    Abstract: Abstract. The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 7 ( 2018-07-02), p. 3861-3870
    Abstract: Abstract. A highly miniaturized limb sounder for the observation of the O2 A-band to derive temperatures in the mesosphere and lower thermosphere is presented. The instrument consists of a monolithic spatial heterodyne spectrometer (SHS), which is able to resolve the rotational structure of the R-branch of that band. The relative intensities of the emission lines follow a Boltzmann distribution and the ratio of the lines can be used to derive the kinetic temperature. The SHS operates at a Littrow wavelength of 761.8 nm and heterodynes a wavelength regime between 761.9 and 765.3 nm with a resolving power of about 8000 considering apodization effects. The size of the SHS is 38 × 38 × 27 mm3 and its acceptance angle is ±5∘. It has an etendue of 0.01 cm2 sr. Complemented by front optics with an acceptance angle of ±0.65∘ and detector optics, the entire optical system fits into a volume of about 1.5 L. This allows us to fly this instrument on a 3- or 6-unit CubeSat. The vertical field of view of the instrument is about 60 km at the Earth's limb when operated in a typical low Earth orbit. Integration times to obtain an entire altitude profile of nighttime temperatures are on the order of 1 min for a vertical resolution of 1.5 km and a random noise level of about 1.5 K. Daytime integration times are 1 order of magnitude shorter. This work presents the design parameters of the optics and a radiometric assessment of the instrument. Furthermore, it gives an overview of the required characterization and calibration steps. This includes the characterization of image distortions in the different parts of the optics, visibility, and phase determination as well as flat fielding.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 13, No. 2 ( 2020-02-11), p. 661-684
    Abstract: Abstract. The indirect effect of atmospheric aerosol particles on the Earth's radiation balance remains one of the most uncertain components affecting climate change throughout the industrial period. The large uncertainty is partly due to the incomplete understanding of aerosol–cloud interactions. One objective of the GoAmazon2014/5 and the ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems)-CHUVA (Cloud Processes of the Main Precipitation Systems in Brazil) projects was to understand the influence of emissions from the tropical megacity of Manaus (Brazil) on the surrounding atmospheric environment of the rainforest and to investigate its role in the life cycle of convective clouds. During one of the intensive observation periods (IOPs) in the dry season from 1 September to 10 October 2014, comprehensive measurements of trace gases and aerosol properties were carried out at several ground sites. In a coordinated way, the advanced suites of sophisticated in situ instruments were deployed aboard both the US Department of Energy Gulfstream-1 (G1) aircraft and the German High Altitude and Long-Range Research Aircraft (HALO) during three coordinated flights on 9 and 21 September and 1 October. Here, we report on the comparison of measurements collected by the two aircraft during these three flights. Such comparisons are challenging but essential for assessing the data quality from the individual platforms and quantifying their uncertainty sources. Similar instruments mounted on the G1 and HALO collected vertical profile measurements of aerosol particle number concentrations and size distribution, cloud condensation nuclei concentrations, ozone and carbon monoxide mixing ratios, cloud droplet size distributions, and downward solar irradiance. We find that the above measurements from the two aircraft agreed within the measurement uncertainties. The relative fraction of the aerosol chemical composition measured by instruments on HALO agreed with the corresponding G1 data, although the total mass loadings only have a good agreement at high altitudes. Furthermore, possible causes of the discrepancies between measurements on the G1 and HALO are examined in this paper. Based on these results, criteria for meaningful aircraft measurement comparisons are discussed.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 11 ( 2018-06-07), p. 8001-8016
    Abstract: Abstract. The photooxidation of methyl vinyl ketone (MVK) was investigated in the atmospheric simulation chamber SAPHIR for conditions at which organic peroxy radicals (RO2) mainly reacted with NO (“high NO” case) and for conditions at which other reaction channels could compete (“low NO” case). Measurements of trace gas concentrations were compared to calculated concentration time series applying the Master Chemical Mechanism (MCM version 3.3.1). Product yields of methylglyoxal and glycolaldehyde were determined from measurements. For the high NO case, the methylglyoxal yield was (19 ± 3) % and the glycolaldehyde yield was (65 ± 14) %, consistent with recent literature studies. For the low NO case, the methylglyoxal yield reduced to (5 ± 2) % because other RO2 reaction channels that do not form methylglyoxal became important. Consistent with literature data, the glycolaldehyde yield of (37 ± 9) % determined in the experiment was not reduced as much as implemented in the MCM, suggesting additional reaction channels producing glycolaldehyde. At the same time, direct quantification of OH radicals in the experiments shows the need for an enhanced OH radical production at low NO conditions similar to previous studies investigating the oxidation of the parent VOC isoprene and methacrolein, the second major oxidation product of isoprene. For MVK the model–measurement discrepancy was up to a factor of 2. Product yields and OH observations were consistent with assumptions of additional RO2 plus HO2 reaction channels as proposed in literature for the major RO2 species formed from the reaction of MVK with OH. However, this study shows that also HO2 radical concentrations are underestimated by the model, suggesting that additional OH is not directly produced from RO2 radical reactions, but indirectly via increased HO2. Quantum chemical calculations show that HO2 could be produced from a fast 1,4-H shift of the second most important MVK derived RO2 species (reaction rate constant 0.003 s−1). However, additional HO2 from this reaction was not sufficiently large to bring modelled HO2 radical concentrations into agreement with measurements due to the small yield of this RO2 species. An additional reaction channel of the major RO2 species with a reaction rate constant of (0.006 ± 0.004) s−1 would be required that produces concurrently HO2 radicals and glycolaldehyde to achieve model–measurement agreement. A unimolecular reaction similar to the 1,5-H shift reaction that was proposed in literature for RO2 radicals from MVK would not explain product yields for conditions of experiments in this study. A set of H-migration reactions for the main RO2 radicals were investigated by quantum chemical and theoretical kinetic methodologies, but did not reveal a contributing route to HO2 radicals or glycolaldehyde.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 13, No. 8 ( 2020-08-17), p. 4353-4392
    Abstract: Abstract. Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Copernicus GmbH ; 2019
    In:  Atmospheric Chemistry and Physics Vol. 19, No. 22 ( 2019-11-19), p. 13891-13910
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 22 ( 2019-11-19), p. 13891-13910
    Abstract: Abstract. This paper presents a new dataset of nighttime atomic oxygen density [O], derived from OH(8–4) ro-vibrational band emissions, using a non-local thermal equilibrium model, with the aim of offering new insight into the atomic oxygen abundances in the mesopause region. The dataset is derived from the level-1 atmospheric background measurements observed by the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument aboard Envisat, with the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) measurements for the atmospheric background. Raw data are reprocessed into monthly zonal mean values in 10∘ latitude bins with a fixed altitude grid of 3 km. The dataset spans from 70∘ S to 70∘ N in latitude and from 80 to 100 km in altitude, covering a time period from May 2002 to December 2011 at local times from 22:00 to 00:00 LT. The atomic oxygen density peaks at about 95 km and the highest values are in the range of 3–8 × 1011 atoms cm−3, depending on latitude and season. There is a rapid decrease of [O] below the peak. The annual oscillation (AO), semiannual oscillation (SAO) and the solar cycle impact are distinguished from the [O] longtime series variations. This new GOMOS [O] dataset conforms to other published datasets and is consistent with the [O] datasets obtained from the Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) OH airglow measurements within about ±20 %.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Sensors and Sensor Systems, Copernicus GmbH, Vol. 6, No. 1 ( 2017-01-23), p. 27-35
    Abstract: Abstract. In contrast to conventional hydronic heating systems, in which the air is used as a medium for the convective heat transfer, an alternative approach is based on the usage of infrared (IR) radiant heating foils. These foils, which are applied to the walls and the ceiling of a laboratory, can be controlled individually. This leads to the possibility of heating the room zonewise and only when a person is present in a zone. A local comfortable climate is provided only in occupied zones, with the remaining zones being kept at a lower base temperature. Consequently, the measurement system has to detect persons in each zone and to determine the putative thermal comfort at relevant locations in the room. For the first problem, we examined and evaluated different sensor types capable of localizing persons without infringing on their anonymity. For the second problem, we used the fact that the thermal comfort mainly depends on the operative temperature (Li et al., 2010; DIN EN ISO 7730, 2006; de Dear and Brager, 2002). According to Simone et al. (2007), this temperature can be measured directly by an easily producible, planar sensor. The sensors were integrated in a wireless sensor network which consists of Wi-Fi-capable microcontroller boards, wireless smart home equipment, a Wi-Fi router, and a server.
    Type of Medium: Online Resource
    ISSN: 2194-878X
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2733700-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  Wind Energy Science Vol. 5, No. 1 ( 2020-01-28), p. 141-154
    In: Wind Energy Science, Copernicus GmbH, Vol. 5, No. 1 ( 2020-01-28), p. 141-154
    Abstract: Abstract. With the increasing demand for greener, sustainable, and economical energy sources, wind energy has proven to be a potential sustainable source of energy. The trend development of wind turbines tends to increase rotor diameter and tower height to capture more energy. The bigger, lighter, and more flexible structure is more sensitive to smaller excitations. To make sure that the dynamic behavior of the wind turbine structure will not influence the stability of the system and to further optimize the structure, a fully detailed analysis of the entire wind turbine structure is crucial. Since the fatigue and the excitation of the structure are highly depending on the aerodynamic forces, it is important to take blade–tower interactions into consideration in the design of large-scale wind turbines. In this work, an aeroelastic model that describes the interaction between the blade and the tower of a horizontal axis wind turbine (HAWT) is presented. The high-fidelity fluid–structure interaction (FSI) model is developed by coupling a computational fluid dynamics (CFD) solver with a finite element (FE) solver to investigate the response of a multi-megawatt wind turbine structure. The results of the computational simulation showed that the dynamic response of the tower is highly dependent on the rotor azimuthal position. Furthermore, rotation of the blades in front of the tower causes not only aerodynamic forces on the blades but also a sudden reduction in the rotor aerodynamic torque by 2.3 % three times per revolution.
    Type of Medium: Online Resource
    ISSN: 2366-7451
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2846783-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 23, No. 12 ( 2023-06-20), p. 6789-6811
    Abstract: Abstract. Satellite- and aircraft-based mid-infrared measurements of polar stratospheric clouds (PSCs) have provided spectroscopic evidence for the presence of β-NAT (nitric acid trihydrate) particles. Metastable nitric acid hydrate phases such as α-NAT and α-NAD (nitric acid dihydrate) have been frequently observed in laboratory experiments but not yet detected as a constituent of PSCs in atmospheric measurements. As for the β-NAD modification, its formation was first observed in X-ray diffraction measurements when the low-temperature α-NAD phase was warmed to a temperature above 210 K. Its infrared spectrum has been reported, but so far no optical constants have been derived that could be used as input for infrared retrievals of PSC composition. In this work, we show that β-NAD particles were efficiently formed in isothermal heterogeneous crystallisation experiments at 190 K from supercooled HNO3/H2O solution droplets containing an embedded mineral dust or meteoric smoke particle analogue. An inversion algorithm based on a T-matrix optical model was used to derive for the first time the mid-infrared complex refractive indices of the β-NAD modification from the measured extinction spectrum of the particles. In contrast to the heterogeneous crystallisation experiments, the α-NAD phase was formed when the HNO3/H2O solution droplets did not contain a solid nucleus and crystallised homogeneously. Using a light-scattering detector that recorded two-dimensional scattering patterns of the crystallised NAD particles, we were able to determine predominant shapes of the α- and β-NAD crystals. We found that α-NAD grew into elongated, needle-shaped crystals, while β-NAD particles were compact in shape. This agrees with previously reported images of α- and β-NAD particles grown on the cryo-stage of an environmental scanning electron microscope. While direct evidence for the existence of metastable NAD in the polar stratosphere is still lacking, our experiments add to the wealth of previous laboratory studies that have identified various conditions for the rapid growth of metastable compositions. In the atmosphere, these could be intermediate states that transform into thermodynamically stable NAT on longer timescales in aged PSCs.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 23, No. 14 ( 2023-07-26), p. 8369-8381
    Abstract: Abstract. Aviation has a large impact on the Earth's atmosphere and climate by various processes. Line-shaped contrails and contrail cirrus clouds lead to changes in the natural cirrus cloud cover and have a major contribution to the effective radiative forcing from aviation. In addition, aviation-induced aerosols might also change the microphysical properties and optical properties of naturally formed cirrus clouds. Latter aerosol–cloud interactions show large differences in the resulting effective radiative forcing, and our understanding on how aviation-induced aerosols affect cirrus cloud properties is still poor. Up to now, observations of this aviation-induced aerosol effect have been rare. In this study, we use combined airborne lidar and in situ ice cloud measurements to investigate differences in the microphysical and optical properties of naturally formed cirrus clouds, which formed in regions that are highly affected by aviation-induced aerosol emissions and, of those, which formed in regions rather unaffected by aviation. Urbanek et al. (2018) showed that those cirrus clouds, which are more affected by aviation-induced soot emission, are characterized by larger values of the particle linear depolarization ratio (PLDR). In this follow-on study we relate collocated lidar measurements performed aboard HALO during the ML-CIRRUS mission of the particle linear depolarization ratio with in situ cloud probe measurements of the number concentration and effective diameter of the ice particles. In situ measurements for both cloud types (high-PLDR-mode – aviation-affected – and low-PLDR-mode – pristine – cirrus) can be reliably compared in a temperature range between 210 and 215 K. Within this temperature range we find that high-PLDR-mode cirrus clouds tend to show larger effective ice particle diameters with a median value of 61.4 compared to 50.7 µm for low-PLDR-mode pristine cirrus clouds. Larger effective ice particles in aviation-influenced (high-PLDR-mode) cirrus are connected to lower ice particle number concentration with a median value of 0.05 compared to 0.11 cm−3 (low-PLDR-mode), which evolved in more pristine regions with only little impact from aviation. We suspect that a suppression of homogeneous ice formation by the heterogeneously freezing soot aerosol particles included in the areas affected by air traffic is the cause of the reduced ice crystal concentrations.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...