GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-03
    Description: A 700‐year pre‐industrial control run with the MPI‐ESM‐LR model is used to investigate the link between the summer East Atlantic (SEA) pattern and the Pacific‐Caribbean rainfall dipole (PCD), a link that has previously been shown using ERA‐Interim reanalysis data. In the model, it is found that the link between the SEA and PCD is present in some multidecadal epochs but not in others. A simple statistical model reproduces this behaviour. In the statistical model, the SEA is represented by a white noise process plus a weak influence from the PCD based on the full 700 years of the model run. The statistical model is relevant to other extratropical modes of variability, for example, the winter North Atlantic Oscillation (NAO), that are weakly influenced by the Tropics. It follows that the link between the Tropics and the winter NAO is likely to undergo modulation on multidecadal time scales, as found in some previous studies. The results suggest that any predictability of the SEA, and by implication the NAO, based on tropical rainfall may not be robust and may, in fact, be modulated on multidecadal time scales, with implications for seasonal and decadal prediction systems.
    Description: The positive phase of the SEA is associated with warm summers in Europe. The figure shows the running correlation in 51 year windows between the SEA index and the corresponding tropical rainfall index in a long pre‐industrial model run. The link between tropical rainfall and the SEA exists only in some decadal epochs, shown by the green shading, implying that predictability of the SEA based on tropical rainfall can be expected to vary on multidecadal time scales.
    Keywords: 551.5 ; nonstationarity ; seasonal prediction ; summer East Atlantic pattern
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 45 (2018): 1923–1929, doi:10.1002/2017GL076662.
    Description: Recent evidence from mooring data in the equatorial Atlantic reveals that semiannual and longer time scale ocean current variability is close to being resonant with equatorial basin modes. Here we show that intraseasonal variability, with time scales of tens of days, provides the energy to maintain these resonant basin modes against dissipation. The mechanism is analogous to that by which storm systems in the atmosphere act to maintain the atmospheric jet stream. We demonstrate the mechanism using an idealized model setup that exhibits equatorial deep jets. The results are supported by direct analysis of available mooring data from the equatorial Atlantic Ocean covering a depth range of several thousand meters. The analysis of the mooring data suggests that the same mechanism also helps maintain the seasonal variability.
    Description: This study was supported by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich 754 “Climate‐Biogeochemistry Interactions in the Tropical Ocean” and through several research cruises with RV Meteor, RV Maria S. Merian, and RV L'Atalante, by the German Federal Ministry of Education and Research as part of the cooperative projects RACE (03F0605B), SACUS (03G0837A), and MiKlip2 (ATMOS‐MODINI; 01LP1517D) and by the European Union 7th Framework Programme (FP7 2007–2013) under grant agreement 603521 PREFACE project. Support for the moored observations was additionally provided by the U.S. National Science Foundation.
    Keywords: Equatorial deep jets ; Seasonal cycle ; Momentum flux convergence ; Tropical instability waves ; Equatorial basin mode resonance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...