GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Pneumology.  (1)
  • Cham :Springer International Publishing AG,  (1)
Document type
Publisher
  • Cham :Springer International Publishing AG,  (1)
Language
Years
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Pneumology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (288 pages)
    Edition: 1st ed.
    ISBN: 9783319411712
    Series Statement: Current Topics in Microbiology and Immunology Series ; v.397
    DDC: 616.0473
    Language: English
    Note: Intro -- Preface -- Contents -- Abbreviations -- 1 General Strategies in Inflammasome Biology -- Abstract -- 1 Introduction: PRRs, PAMPs, and DAMPs -- 2 PRRs as Inflammasome Scaffolds -- 3 Inflammasome Activation Mechanisms -- 3.1 The NLRP3 Inflammasome -- 3.2 The NLRP1 Inflammasome -- 3.3 The NLRC4 Inflammasome -- 3.4 The AIM2 Inflammasome -- 3.5 The Pyrin Inflammasome -- 4 Concluding Remarks -- Acknowledgments -- References -- 2 Structural Mechanisms in NLR Inflammasome Assembly and Signaling -- Abstract -- 1 Introduction -- 2 Overviews of NOD-Like Receptors -- 3 Auto-Inhibition Mechanism of NLRC4 -- 4 Mechanism of NAIP-NLRC4 Inflammasome Activation and Assembly -- 5 A Positive Role of the C-Terminal LRR Domain in the Activation of NAIP-NLRC4 Inflammasomes? -- 6 Activation of Other NLR Inflammasomes -- 7 Insights into the Assembly of ASC-Dependent Inflammasomes -- 8 Concluding Remarks -- References -- 3 Salmonella and the Inflammasome: Battle for Intracellular Dominance -- Abstract -- 1 Introduction -- 1.1 Salmonella -- 1.2 Inflammasomes -- 2 Salmonella and the Immune Cell Inflammasome -- 2.1 Macrophages -- 2.1.1 Naip1-6, hNAIP, and Nlrc4 -- 2.1.2 Nlrp3 and Asc -- 2.1.3 Caspase-11 -- 2.1.4 Other Inflammasomes Involved in Salmonella Detection -- 2.2 Dendritic Cells (DCs) -- 2.3 Neutrophils -- 3 Salmonella and the Intestinal Epithelial Inflammasome -- 4 Inflammasome Evasion by Salmonella -- 5 Concluding Remarks -- References -- 4 Activation and Evasion of Inflammasomes by Yersinia -- Abstract -- 1 Introduction -- 1.1 Evolutionary Relationships Among the Pathogenic Yersinia -- 1.2 Features of Yersinia-Induced Cell Death -- 2 Mechanisms of Yersinia-Induced Cell Death -- 2.1 YopJ-Induced Death via the Extrinsic Apoptosis Pathway -- 2.2 Inflammasome Sensing of Yersinia Infection and Its Evasion by YopK -- 2.3 Evasion of Inflammasome by YopM. , 3 Interactions Between Yersinia and Cell Death Pathways In Vivo -- 3.1 Impact of Yersinia-Induced Cell Death on Pathogenesis and Host Defense -- 3.2 Activation of Cell Death by Yersinia Virulence Factors In Vivo -- 3.3 In Vivo Interactions Between Yersinia and Inflammasome Responses -- 4 Concluding Remarks -- Acknowledgments -- References -- 5 The Orchestra and Its Maestro: Shigella's Fine-Tuning of the Inflammasome Platforms -- Abstract -- 1 Introduction -- 2 Epithelial Cells -- 3 Macrophages -- 4 Neutrophils -- 5 Dendritic Cells -- 6 Lymphocytes -- 7 Shigella and the Inflammasome-Who's Holding the Conducting Baton? -- References -- 6 Inflammasome Activation by Helicobacter pylori and Its Implications for Persistence and Immunity -- Abstract -- 1 Introduction -- 1.1 H. pylori Is a Prime Example of Chronic Infections and Gastric Disease Development -- 1.2 Host Genetic Polymorphisms Are Crucial for& -- !blank -- Gastric Pathology -- 2 Importance of IL-1β in Gastric Cancer Development -- 3 Inflammasome Responses During H. pylori Infection -- 3.1 Inflammasome Activation by H. pylori -- 3.2 Regulation of Inflammasome Activation upon H. pylori Infection -- 3.3 Inflammasome Activation-Mediated Host-Specific Immunity in H. pylori Infection -- 3.4 Inflammasome-Mediated IL-1β Secretion in Cultured Human and Mouse Cells -- 4 Concluding Remarks -- Acknowledgments -- References -- 7 Listeria monocytogenes and the Inflammasome: From Cytosolic Bacteriolysis to Tumor Immunotherapy -- Abstract -- 1 Introduction -- 1.1 Overview -- 1.2 Life Cycle -- 1.3 Innate Immune Response -- 2 Activation of Different Inflammasomes -- 2.1 NLRP3 Activation -- 2.2 NLRC4 Activation -- 2.3 AIM2 Activation -- 2.4 Other NLR Engagement -- 3 Avoidance of Inflammasome Activation -- 3.1 Avoidance of NLRP3 -- 3.2 Avoidance of NLRC4 -- 3.3 Avoidance of AIM2. , 3.4 Active Inhibition of the Inflammasome -- 4 Role in Pathogenesis -- 4.1 Role of Caspase-1/11 -- 4.2 Role of ASC -- 4.3 Role of IL-1β and IL-18 -- 4.4 Innate Immune Cell Infiltrate -- 5 Adaptive Immune Response to L. monocytogenes -- 5.1 Protective Immunity -- 5.2 Influence of Cytokines -- 6 Concluding Remarks -- Acknowledgments -- References -- 8 Inflammasome Recognition and Regulation of the Legionella Flagellum -- Abstract -- 1 Introduction: The Facultative Intracellular Pathogen Legionella pneumophila -- 1.1 Environmental Niches, Human Infection and Mouse Models -- 1.2 Intracellular Replication Within the Legionella-Containing Vacuole -- 1.3 The Biphasic Life Cycle of L. pneumophila -- 2 Modulation of Inflammasome Activity by L. pneumophila -- 2.1 Pattern Recognition Receptors Implicated in L. pneumophila Infection -- 2.2 Inflammasome Activation by L. pneumophila Flagellin -- 2.3 Regulation of Cell Death by Icm/Dot- Translocated Effectors -- 3 Regulation of Legionella Flagellin and Motility -- 3.1 Legionella Flagellin as a Transmissive and Virulence Factor -- 3.2 Regulation of Legionella Motility by the Signaling Molecule LAI-1 -- 3.3 The Flagellar Regulon of Legionella -- 4 Concluding Remarks -- Acknowledgments -- References -- 9 Inflammasome Activation and Function During Infection with Mycobacterium tuberculosis -- Abstract -- 1 Introduction -- 2 Early Events in M. tuberculosis-Infected Phagocytes -- 3 Regulation of Inflammasome Activation via the Mycobacterial Type VII Secretion System (T7SS) -- 4 M. tuberculosis Activates the Inflammasome in Macrophages -- 5 M. tuberculosis Triggers Inflammasome-Dependent and Inflammasome-Independent IL-1β Production in Various Myeloid Cells -- 6 Activation of Cytosolic "Non-Inflammasome" Sensors -- 7 Regulation of Inflammasome Activity During M. tuberculosis Infection. , 8 In Vivo Regulation of IL-1β and the Inflammasome in Host Protection -- 9 Concluding Remarks -- References -- 10 Role of Canonical and Non-canonical Inflammasomes During Burkholderia Infection -- Abstract -- 1 Introduction -- 2 Innate Immune Response to Burkholderia Infection -- 3 Role of Caspase-1 -- 4 Role of NLRC4 Inflammasome -- 5 Role of NLRP3 Inflammasome -- 6 Opposing Function of IL-1β and IL-18 -- 7 Role of the Caspase-11 Non-canonical Inflammasome -- 8 Different Contribution of the Canonical and Non-canonical Inflammasomes -- 9 Role of the Human Non-canonical Inflammasome -- 10 Concluding Remarks -- References -- 11 Inflammasomes in Pneumococcal Infection: Innate Immune Sensing and Bacterial Evasion Strategies -- Abstract -- 1 Introduction -- 2 Brief Overview of the Innate Immune Response to S. Pneumoniae Infection -- 3 Sensing of S. Pneumoniae by Inflammasomes -- 4 Role of Inflammasomes in Pneumococcal Infections -- 5 Evasion of Inflammasome-Dependent Sensing by Emerging Strains -- 6 Concluding Remarks -- Acknowledgments -- References -- 12 Francisella Inflammasomes: Integrated Responses to a Cytosolic Stealth Bacterium -- Abstract -- 1 Introduction -- 1.1 The Francisella Genus -- 1.2 Francisella tularensis, the Agent of Tularemia -- 1.3 Intracellular Life Cycle -- 2 Overview of the Innate Immune Responses to Francisella Infection -- 2.1 TLRs and NF-κB Activation -- 2.2 Signaling Pathways Leading to Type I IFN Production -- 3 Francisella Activates the Aim2 Inflammasome in Murine Phagocytes -- 3.1 Aim2 Inflammasome and the IFN Requirement -- 3.1.1 In Vitro and In Vivo Role of the Inflammasome -- 3.1.2 Type I IFN Signaling Is Required for Francisella-mediated Inflammasome Activation -- 3.1.3 Aim2 Is the Inflammasome Receptor Detecting Francisella in the Host Cytosol. , 3.2 Gbp-mediated Bacteriolysis Is Required to Trigger Aim2 Inflammasome Activation -- 3.3 TLR2 Controls pro-IL-1β Level and the Kinetics of AIM2 Inflammasome Activation -- 4 Francisella and the Non-canonical Inflammasomes -- 4.1 Francisella LPS Escapes Caspase-11 Recognition -- 4.2 ASC-dependent Caspase-1-independent Pathways -- 5 Inflammasome Activation in Human Cells -- 6 Lessons from the Bacterial Side: Study of Hypercytotoxic Mutants -- 7 Hypervirulent Strains Escape Inflammasome Detection -- 8 Concluding Remarks -- References -- 13 Inflammasome Activation Can Mediate Tissue-Specific Pathogenesis or Protection in Staphylococcus aureus Infection -- Abstract -- 1 Introduction -- 2 Inflammasomes that are Activated by S. aureus -- 3 Role of Inflammasome Activation in Infection Models -- 3.1 The NLRP3 Inflammasome Responds to Hemolysins to Control S. aureus Dermal Infections -- 3.2 IL-1β Signaling Is Critical for Combating Soft Tissue Infections -- 3.3 S. aureus Hijacks the NLRP3 Inflammasome to Exacerbate Lung Infection Pathology -- 3.4 Microglia Activate NLRP3 In Vitro but Depend on AIM2 to Clear S. aureus Central Nervous System Infections -- 4 How the Host Inflammasome Can Affect Other Inflammatory Processes -- 5 Integrating Inflammasome Studies to Improve Patient Care -- 6 Concluding Remarks -- Acknowledgments -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...