GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Green chemistry.  (1)
  • Inorganic ion exchange materials.  (1)
  • Cham :Springer International Publishing AG,  (2)
Document type
Publisher
Language
Years
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (299 pages)
    Edition: 1st ed.
    ISBN: 9783030678845
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 660.0286
    Language: English
    Note: Intro -- Contents -- 1 Biomass-Derived Polyurethanes for Sustainable Future -- Abstract -- 1 Introduction -- 1.1 Chemicals for Preparation of Polyurethanes -- 1.2 Importance of Green Chemicals and Synthesis Methods -- 1.3 Characteristics of Biomaterials for Polyurethanes -- 2 Bio-Oils as a Renewable Resource for Polyurethanes -- 2.1 Epoxidation and Ring-Opening Reactions -- 2.2 Hydroformation and Hydrogenation Reactions -- 2.3 Ozonolysis -- 2.4 Thiol-Ene Reaction -- 2.5 Transesterification Reaction -- 3 Terpenes as Green Starting Chemicals for Polyurethanes -- 4 Lignin for Green Polymers -- 5 Conclusion -- References -- 2 Mechanochemistry: A Power Tool for Green Synthesis -- Abstract -- 1 Introduction -- 2 History of Mechanochemistry -- 3 Principles of Mechanochemistry -- 3.1 Mechanisms and Kinetics of Mechanochemistry -- 3.2 Effects of Reaction Parameters -- 4 Mechanochemical Synthesis of Materials -- 4.1 Mechanochemical Synthesis of Co-crystals -- 4.2 Mechanochemistry in Inorganic Synthesis -- 4.3 Mechanochemistry in Organic Synthesis -- 4.4 Mechanochemistry in Metal-Organic Frameworks (MOFs) -- 4.5 Mechanochemistry in Porous Organic Materials (POMs) -- 4.6 Mechanochemical Synthesis of Polymers -- 5 Conclusions -- References -- 3 Future Trends in Green Synthesis -- Abstract -- 1 Introduction -- 2 Green Chemistry Metrics -- 2.1 Atom Economy (AE) -- 2.2 Environmental Factor (E Factor) -- 2.3 Process Mass Intensity (PMI) -- 2.4 Reaction Mass Efficiency (RME) -- 3 Application of Green Concept in Synthesis -- 3.1 Solvent-Based Organic Synthesis -- 3.2 Aqueous Medium -- 3.2.1 Micellar Media -- 3.2.2 Different Non-Aqueous Media -- Ionic Liquids -- Fluorous Media -- Supercritical Fluid -- Solvent-Free Synthesis -- 4 Future Trends -- References -- 4 Plant-Mediated Green Synthesis of Nanoparticles -- Abstract -- 1 Introduction. , 2 Methods for Metallic Nanoparticle Biosynthesis -- 3 Green Biosynthesis of Metallic NPs -- 3.1 Gold Nanoparticles -- 3.2 Platinum Nanoparticles -- 3.3 Silver Nanoparticles -- 3.4 Zinc Oxide Nanoparticles -- 3.5 Titanium Dioxide Nanoparticles -- 4 Different Parts Used for the Synthesis of Metallic Nanoparticles -- 4.1 Fruit -- 4.2 Stem -- 4.3 Seeds -- 4.4 Flowers -- 4.5 Leaves -- 5 Conclusions -- References -- 5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- Abstract -- 1 Introduction -- 2 Advantages of Green Synthesis Methods -- 3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 3.1 Biological Methods -- 3.1.1 Using Microorganism -- Microorganisms as Reactant -- Microorganism as Template -- 3.1.2 Using Plant -- Plant as Reactant -- Plant as Template -- 3.1.3 Using Other Green Templates -- 3.2 Physical and Chemical Methods -- 3.2.1 Green Techniques -- 3.2.2 Green Reagents -- 3.2.3 Green Solvents -- 4 Growth Mechanism of Metal and Metal Oxide HSNs -- 4.1 Biological Method -- 4.1.1 Biomolecules as Reagents -- 4.1.2 Biomolecules as Templates -- 4.2 Physical and Chemical Methods -- 5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 5.1 Biomedical Application -- 5.2 Environmental Remediation -- 5.2.1 Wastewater Treatment -- 5.2.2 Energy Storage -- 5.2.3 Sensing -- 6 Present Challenges and Future Prospect -- Acknowledgements -- References -- 6 Bioprivileged Molecules -- Abstract -- 1 Introduction -- 2 Four Carbon 1,4-Diacids -- 2.1 Succinic Acid -- 2.2 Fumaric Acid -- 2.3 Malic Acid -- 3 Furan 2,5-Dicarboxylic Acid (FDCA) -- 4 3-Hydroxypropionic Acid (3-HPA) -- 5 Glucaric Acid -- 6 Glycerol -- 7 Aspartic Acid -- 8 Itaconic Acid -- 9 3-Hydroxybutyrolactone -- 10 Sorbitol -- 11 Xylitol -- 12 Glutamic Acid -- 13 Levulinic Acid. , 14 Emerging Molecules -- 15 Conclusion -- References -- 7 Membrane Reactors for Green Synthesis -- Abstract -- 1 Introduction -- 2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL -- 2.1 Ionic Liquid Media Effect on Free CLAB -- 2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL -- 2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL -- 3 Mixed Ionic Electronic MR -- 3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane -- 3.2 Steam Flow Effect on Side I of Membrane -- 3.3 Temperature Effect -- 4 Green Synthesis of Methanol in a Membrane Reactor -- 5 Green Fuel Energy -- 5.1 Green H2 Energy -- 5.2 Biofuel Energy -- 5.3 Green Fuel Additive -- 6 Biocatalyst Membrane Reactors -- 7 Photocatalytic Membrane Reactors -- 8 Conclusions -- References -- 8 Application of Membrane in Reaction Engineering for Green Synthesis -- Abstract -- 1 Introduction -- 2 Applications of Membrane Reactors in Reaction Engineering -- 2.1 Syngas Production -- 2.2 Hydrogen Production -- 2.3 CO2 Thermal Decomposition -- 2.4 Higher Hydrocarbon Production -- 2.5 Methane Production -- 2.6 Ammonia Production -- 3 Environmental Impacts -- 4 Conclusions and Future Recommendations -- Acknowledgements -- References -- 9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes -- Abstract -- 1 Introduction -- 2 Principle -- 3 Enzymes Involved in Light-Driven Catalysis -- 3.1 Heme-Containing Enzymes -- 3.1.1 Cytochrome P450 -- 3.1.2 Peroxidases -- 3.2 Flavin-Based Enzyme -- 3.2.1 Baeyer-Villiger Monooxygenases -- 3.2.2 Old Yellow Enzymes -- 3.3 Metal Cluster-Centered Enzyme -- 3.3.1 Hydrogenases -- 3.3.2 Carbon Monoxide Dehydrogenases -- 4 Nanoparticle-Based Activation of Enzyme -- 5 Applications in Photo-Biocatalysis -- 5.1 Isolated Enzymes/Cell Lysates -- 6 Summary and Future Scope -- References. , 10 Biomass-Derived Carbons and Their Energy Applications -- Abstract -- 1 Introduction -- 2 Types of Biomass Materials -- 2.1 Plant-Based Carbons -- 2.2 Fruit-Based Carbons -- 2.3 Animal-Based Carbons -- 2.4 Microorganism-Based Carbons -- 3 Activation of Biomass-Derived Carbons -- 3.1 Activation of Carbons -- 3.1.1 Chemical Activation of Carbons -- 3.1.2 Carbon Activation Through Physical Method -- 3.1.3 Self-activation of Carbons -- 3.2 Pyrolysis Techniques -- 3.2.1 Effect of Temperature -- 3.2.2 Effect of Residence Time -- 3.2.3 Heating Rate Effect -- 3.2.4 Size of the Particle -- 3.3 Microwave-Assisted Technique -- 3.4 Carbonization by Hydrothermal -- 3.5 Ionothermal Carbonization -- 3.6 Template Method -- 4 Energy Storage Applications of Biomass Carbons -- 4.1 Supercapacitors -- 4.2 Li/Na-Ion Batteries -- 5 Conclusion -- Acknowledgements -- References -- 11 Green Synthesis of Nanomaterials via Electrochemical Method -- Abstract -- 1 Introduction -- 2 Green Synthesis -- 2.1 Application of Biology in Green Synthesis -- 2.2 Green Synthesis Based on the Application of Solvent -- 3 Computational Data and Analysis -- 4 Electrochemical Method -- 5 Electrodeposition Method -- 5.1 Experimental Setup for Electrodeposition -- 6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis -- 7 Conclusion -- References -- 12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments -- Abstract -- 1 Introduction -- 2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs]. -- 2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations -- 2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions. , 2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations -- 2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines -- 2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles -- 2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines -- 2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR) -- 2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions -- 2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O -- 2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines -- 2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines -- 2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs -- 3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs] -- 3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway -- 3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway -- 3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy -- 3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations -- 3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions -- 3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides. , 3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Inorganic ion exchange materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (264 pages)
    Edition: 1st ed.
    ISBN: 9783030060855
    DDC: 543.0893
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Use of Ion-Exchange Resins in Dehydration Reactions -- 1.1 Introduction -- 1.2 Catalytic Processes of Dehydration -- 1.2.1 Dehydration of Alcohols to Alkenes -- 1.2.2 Dehydration of Alcohols to Ethers -- 1.2.3 Dehydration of Carbohydrates -- 1.2.4 Other Dehydration Processes -- 1.3 Conclusion -- References -- 2 The Application of Ion-Exchange Resins in Hydrogenation Reactions -- 2.1 Introduction -- 2.2 Ion-exchange resin as a catalyst and support in reaction processes -- 2.2.1 Hydrogenation reactions and catalysis -- 2.3 Ion-Exchange Resins as Catalyst and Support for Hydrogenation Reactions -- 2.3.1 Hydrogenation of Unsaturated Hydrocarbon Compounds Using Ion-Exchange Resins -- 2.3.2 Reduction, Removal, and Hydrogenation of Nitrates Using Ion-Exchange Resin -- 2.3.3 Hydrodechlorination Reaction Using Ion-Exchange Resin -- 2.4 Conclusions -- References -- 3 Use of Ion-Exchange Resins in Alkylation Reactions -- 3.1 Introduction -- 3.2 Aspects of Ion-Exchange Resins for the Alkylation Reaction -- 3.3 Alkylation Process Using Ion-Exchange Resins -- 3.3.1 Reactors and Heterogeneous Catalysis -- 3.3.2 Alkylation Process -- 3.3.3 A Process for Continuous Alkylation of Phenol Using Ion-Exchange Resin -- 3.3.4 Process for Alkylating Benzene with Tri- and Tetra-substituted Olefins with a Sulfonic Acid Type Ion-Exchanger Resin -- 3.4 Alkylation of Alkenes with Isoalkanes -- 3.5 The Reaction of Alkylation of Sulfur Compounds with Olefins -- 3.6 Alkylation of Aromatic Compounds -- 3.6.1 The Reaction of Aromatic Compounds with Olefins -- 3.6.2 The Reaction of Aromatic Compounds with Alkyl Halides and Alcohols -- 3.7 Alkylation of Phenol -- 3.8 Alkylation of Furan and Indol Derivatives -- 3.8.1 Indole Alkylation -- 3.8.2 Furan Alkylation -- 3.9 Conclusions -- References. , 4 Ion Exchange Resins Catalysed Esterification for the Production of Value Added Petrochemicals and Oleochemicals -- 4.1 Introduction -- 4.2 Ion Exchange Resin Catalysed Esterification for the Production of Petrochemicals -- 4.2.1 Esterification of Acetic Acid -- 4.2.2 Esterification of Acrylic Acid -- 4.2.3 Esterification of Lactic Acid -- 4.2.4 Esterification of Maleic Acid -- 4.3 Ion Exchange Resin Catalysed Esterification for the Production of Oleochemicals -- 4.3.1 Esterification of Oleic Acid -- 4.4 Esterification of Butyric Acid -- 4.5 Esterification of Palmitic Acid -- 4.6 Esterification of Nanonoic Acid -- 4.7 Esterification of Free Fatty Acid in Plant Oil -- 4.8 Summary and Future Prospects -- References -- 5 Synthesis and Control of Silver Aggregates in Ion-Exchanged Silicate Glass by Thermal Annealing and Gamma Irradiation -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Glass Composition -- 5.2.2 Ion Exchange -- 5.2.3 Gamma Irradiation and Thermal Treatment -- 5.2.4 UV-Vis Optical Absorption Spectrometry -- 5.3 Results and Discussion -- 5.3.1 Effect of Ion Exchange Conditions -- 5.3.2 Effect of Thermal Annealing Conditions -- 5.3.3 Effect of Gamma Irradiation -- 5.3.4 Combined Effects of Gamma Irradiation and Thermal Annealing -- 5.4 Conclusion -- References -- 6 Use of Ion-Exchange Resin in Reactive Separation -- 6.1 Introduction -- 6.2 Use of Ion-Exchange Resin in Reactive Separation -- 6.2.1 Reactive Distillation (RD) -- 6.3 Reactive Chromatography (RC) -- 6.4 Reactive Extraction (RE) -- 6.5 Reactive Absorption (RA) -- 6.6 Conclusion -- References -- 7 Chromatographic Reactive Separations -- 7.1 Introduction -- 7.1.1 Reactive Distillation (RD) -- 7.1.2 Reactive Chromatography (RC) -- 7.1.3 Reactive Extraction (RE) -- 7.1.4 Reactive Membranes (RM) -- 7.1.5 Reactive Crystallization (RCr) -- 7.2 Concluding Remarks -- References. , 8 Ion-Exchange Chromatography in Separation and Purification of Beverages -- 8.1 Introduction -- 8.2 Ion-Exchange Resins -- 8.2.1 Properties of Ion-Exchange Resins Used for Industrial Applications -- 8.2.2 Applications in Drinking Water Treatment -- 8.2.3 Major Ion-Exchange Processes in Water Treatment -- 8.2.4 Applications in Nonalcoholic Beverages -- 8.2.5 Applications in Alcoholic Beverages -- 8.3 Conclusions -- References -- 9 Ion Exchange Resin Technology in Recovery of Precious and Noble Metals -- 9.1 Introduction -- 9.2 Recovery of Metals from Their Pregnant Solutions -- 9.2.1 Gold -- 9.2.2 Recovery and Removal of Silver from Aqueous Industrial Solutions by Ion Exchange Technology -- 9.2.3 Removal of Copper from Industrial Effluents by Ion Exchange Technology -- 9.2.4 Uranium -- 9.2.5 Removal of Iron and Sulfate Ions from Copper Streams by Ion Exchange Technology -- 9.3 Conclusions -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...