GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Renewable energy sources.  (2)
  • Cham :Springer International Publishing AG,  (2)
  • Newark :John Wiley & Sons, Incorporated,
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (354 pages)
    Edition: 1st ed.
    ISBN: 9783030728779
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 628.532
    Language: English
    Note: Intro -- Contents -- 1 Chemical Valorization of CO2 -- Abstract -- 1 Introduction -- 2 CO2-Derived Fuels and Chemicals -- 2.1 Methane -- 2.2 Methanol -- 2.3 Dimethyl Ether -- 2.4 Formic Acid -- 2.5 Ethanol -- 2.6 CO2-Fischer-Tropsch Liquid Fuels -- 2.7 Carbon Monoxide-Syngas -- 3 CO2 Chemically Derived Materials -- 3.1 Polymers -- 3.2 CO2-Derived Building Materials -- 4 Conclusions -- References -- 2 Progress in Catalysts for CO2 Reforming -- Abstract -- 1 Introduction -- 2 Technologies for Capturing and Storing Carbon Dioxide -- 3 Technologies for Using Carbon Dioxide -- 4 Methane Dry Reforming Process -- 4.1 Progress in Catalysts for Methane Dry Reforming (1928-1989) -- 4.2 Progress in Catalysts for Methane Dry Reforming (1990-1999) -- 4.3 Progress in Catalysts for Methane Dry Reforming (2000-2009) -- 4.4 Progress in Catalysts for Methane Dry Reforming (2010-2019) -- 4.5 Current Status in the Catalysts for Methane Dry Reforming -- 5 Dry Reforming of Other Compounds -- 6 Use of Steam or Oxygen in Dry Reforming of Methane and Other Compounds -- 7 Solid Oxide Fuel Cells Fueled with Biogas -- 8 Commercialization of Dry Reforming Process -- 9 Conclusions -- References -- 3 Fuel Generation from CO2 -- Abstract -- 1 Introduction -- 2 Approaches for Directly Converting CO2 to Fuels -- 2.1 Pure CO2 Decomposition Technology -- 2.2 Reagent-Based CO2 Conversion Technology -- 2.2.1 Dry Deformation of Methane Technology -- 2.2.2 Catalytic Hydrogenation of CO2 -- 3 Biological CO2 Fixation for Fuels -- 3.1 Thermochemical Conversion -- 3.1.1 Torrefaction -- 3.1.2 Pyrolysis -- 3.1.3 Thermochemical Liquefaction -- 3.1.4 Gasification -- 3.1.5 Direct Combustion -- 3.2 Biochemical Conversion -- 3.2.1 Biodiesel -- 3.2.2 Bioethanol -- 3.2.3 Biomethane -- 3.2.4 Biohydrogen -- 3.2.5 Bioelectricity -- 3.2.6 Volatile Organic Compounds. , 4 Conclusion and Future Perspectives -- References -- 4 Thermodynamics of CO2 Conversion -- Abstract -- 1 Introduction -- 2 Carbon Dioxide Capture -- 3 Carbon Dioxide Utilisations -- 4 Thermodynamic Considerations -- 5 Thermodynamics of CO2 -- 5.1 The Thermodynamic Attainable Region (AR) -- 5.2 Using Hess's Law to Transform the Extents to G-H AR @ 25˚C -- 5.3 Increasing Temperature on G-H AR -- 6 Conclusion -- Acknowledgements -- References -- 5 Enzymatic CO2 Conversion -- Abstract -- 1 Introduction -- 1.1 CO2 as a Greenhouse Gas -- 1.2 Carbon Capture, Storage, and Utilization -- 1.3 CO2 as a Chemical Feedstock -- 1.4 CO2 Conversion with Enzymes -- 2 Natural Conversion of CO2 in Cells -- 3 Enzymatic Conversion of CO2 in Cells -- 3.1 Conversion of CO2 by a Single Enzyme (in vitro) -- 3.1.1 Formate Dehydrogenase -- 3.1.2 Carbonic Anhydrase -- 3.1.3 Carbon Monoxide Dehydrogenase -- 3.1.4 Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO) -- 3.2 Conversion of CO2 by a Multi-Enzyme Cascade in vitro -- 3.3 Other Ways (Photocatalytic CO2 Methanation) -- 4 Industrial Applications -- 4.1 Alcohols -- 4.2 Organic Acids -- 4.3 Terpenoids -- 4.4 Fatty Acids -- 4.5 Polyhydroxyalkanoates -- 4.6 Calcium Carbonate -- 5 Summary and Future Prospects -- References -- 6 Electrochemical CO2 Conversion -- Abstract -- 1 Introduction -- 2 Electrochemical CO2 Conversion -- 2.1 Fundamentals of the Process -- 2.2 Variants of Electrochemical Conversion of CO2 -- 2.2.1 Aqueous Electrolytes -- 2.2.2 Non-Aqueous Electrolytes -- 2.2.3 Solid Oxide Electrolytes -- 2.2.4 Molten Salt Electrolytes -- 3 Electrochemical CO2 Conversion from Molten Salts -- 3.1 Present State of Electrochemical Reduction of CO2in Molten Salts for the Production of Solid-Phase Carbonaceous Nanomaterials -- 3.2 Direct Electrochemical Reduction of CO2 in Chloride Melts. , 3.3 Indirect Electrochemical Reduction of CO2 in Molten Salts -- 3.4 The Mechanisms of Electrode Reactions Occurring at the Cathode and Anode -- 3.5 Prospects for CO2 Conversion in Molten Salts -- 4 Conclusions -- References -- 7 Supercritical Carbon Dioxide Mediated Organic Transformations -- Abstract -- 1 Introduction -- 2 Applications of Supercritical Carbon Dioxide -- 2.1 Hydrogenation Reactions -- 2.2 Asymmetric Hydrogenation Reactions -- 2.3 Diels-Alder Reaction -- 2.4 Coupling Reaction -- 2.5 Oxidation Reaction -- 2.6 Baeyer-Villiger Oxidation Reaction -- 2.7 Iodination Reaction -- 2.8 Polymerization Reaction -- 2.9 Carbonylation Reaction -- 2.9.1 Acetalization Reaction -- 2.9.2 Olefin Metathesis Reaction -- 2.9.3 Synthesis of heterocycles -- Synthesis of α-alkylidene Cyclic Carbonates -- Synthesis of 4-Methyleneoxazolidin-2-Ones -- Synthesis of 5-Alkylidene-1, 3-Oxazolidin-2-Ones -- Synthesis of 6-Phenyl-3a, 4-Dihydro-1H-Cyclopenta[C]furan-5(3H)-One -- Synthesis of 3, 4, 5, 6-Tetraethyl-2H-Pyran-2-One -- 3 Conclusions -- Acknowledgements -- References -- 8 Theoretical Approaches to CO2 Transformations -- Abstract -- 1 Carbon Dioxide Properties -- 2 CO2 Transformation as an Undeniable Necessity -- 3 CO2 Activation -- 3.1 Methodologies of CO2 Activation -- 4 Theoretical Insight of CO2 Transformation -- 4.1 The Theoretical Approach in CO2 Conversion to Value-Added Chemicals -- 4.1.1 Carbon Monoxide -- 4.1.2 Methane -- 4.1.3 Methanol -- 4.1.4 Formic Acid -- 4.1.5 Heterocycles -- Cyclic Carbonates -- Cyclic Carbamate -- Quiznazoline-2,4(1H,3H)-Dione -- 4.1.6 Summary and Outlook -- 5 Theoretical Designing of Novel Catalysts Based on DFT Studies -- 5.1 Theoretical Designing: Problems and Opportunities -- 6 Conclusion -- References -- 9 Carbon Dioxide Conversion Methods -- Abstract -- 1 Introduction -- 2 Molecular Structure of CO2. , 3 Thermo-Kinetics of CO2 Conversion -- 4 CO2 Conversion Methods and Products -- 4.1 Fischer-Tropsch Gas-to-Liquid (GTL) -- 4.2 Mineralization -- 4.3 Chemical Looping Dry Reforming -- 4.4 Enzymatic Conversion -- 4.5 Photocatalytic and Photo-Electrochemical Conversion -- 4.6 Thermo-Chemical Conversion -- 4.7 Hydrogenation -- 4.8 Reforming -- 5 Economic Assessment of CO2Alteration to Valuable Products -- 5.1 Syngas -- 5.2 Methanol -- 5.3 Formic Acid -- 5.4 Urea -- 5.5 Dimethyl Carbonate (DMC) -- 6 Conclusions and Future Perspective -- Acknowledgements -- References -- 10 Closing the Carbon Cycle -- Abstract -- 1 Introduction -- 2 Methods to Capture CO2 -- 3 CO2 Capture Technologies -- 4 CO2 Capture from the Air -- 5 Biomass and Waste-Based Chemicals -- 6 Advantages of Biomass-Based Chemicals -- 7 Replacement of Carbon-Based Energy Resources -- 8 Biomass Energy -- 9 Wind Energy -- 10 Solar Energy -- 11 Ocean Energy -- 12 Geothermal Energy -- 13 Hydrothermal Energy -- 14 Conclusions -- References -- 11 Carbon Dioxide Utilization to Energy and Fuel: Hydrothermal CO2 Conversion -- Abstract -- 1 Introduction -- 2 Hydrothermal CO2 Conversion -- 2.1 Metals and Catalysts as Reductant -- 2.2 Organic Wastes as Reductant -- 2.3 Inorganic Wastes as Reductant -- 2.4 Biomass as Reductant -- 3 Conclusion -- References -- 12 Ethylenediamine-Carbonic Anhydrase Complex for CO2 Sequestration -- 1 Introduction -- 2 An Overview of Carbonic Anhydrase (CA) -- 3 Mechanism of Action for Biocarbonate Formation -- 4 Historical Background of Carbonic Anhydrase -- 5 Sources of Carbonic Anhydrase -- 6 Carbonic Anhydrase in Microorganism -- 6.1 Micrococcus Lylae, Micrococcus Luteus, and Pseudomonas Fragi -- 6.2 Bacillus Subtilis and Citrobacter Freundii -- 6.3 Neisseria Gonorrhoeae -- 6.4 Helicobacter Pylori -- 7 Plant Carbonic Anhydrase -- 8 Overview of CO2. , 9 Sources of Carbon Dioxide (CO2) -- 10 Effect of Carbon Dioxide (CO2) -- 11 Carbon Dioxide Capturing -- 12 Carbon Dioxide (CO2) Sequestration -- 13 Carbon Dioxide (CO2) Sequestration by Carbonic Anhydrase -- 14 Separation System for CO2 Sequestration -- 15 Cryogenic Separation -- 16 Membrane Separation -- 17 Absorption -- 18 Adsorption -- 19 Bioreactors for CO2 Sequestration -- 20 Carbonic Anhydrase Immobilization -- 21 Ethylenediamine for Carbon Dioxide (CO2) Capturing -- 22 CO2 Capturing and Sequestration with Ethylenediamine-Carbonic Anhydrase Complex -- 23 CO2 Capturing and Sequestration Design and Optimization: Challenges and Future Prospects -- 24 Conclusion -- References -- 13 Green Pathway of CO2 Capture -- Abstract -- 1 Introduction -- 2 Molecular Structure of Carbon Dioxide -- 3 CO2 Capture System -- 3.1 Post-Combustion System -- 3.2 Pre-Combustion System -- 3.3 Oxy-Fuel Combustion System -- 4 Absorption Technology -- 4.1 Green Absorption with Ionic Liquids -- 4.1.1 Properties and Uses of Ionic Liquids -- 4.1.2 CO2 Solubility in PILs -- 4.1.3 CO2 Absorption in PILs with Carboxylate Anion -- 4.2 Reaction Mechanism Involved in CO2-Absorption -- 5 Adsorption Technology -- 5.1 Organic Adsorbents -- 5.1.1 Activated Charcoal -- 5.1.2 Biochar -- 5.1.3 Metal-Organic Frameworks (MOFs) -- 5.2 Other CO2 Adsorbents -- 5.2.1 Metal Oxide-Based Absorbents -- 5.2.2 Zeolites -- 5.3 Biological Processes of CO2Sequestration -- 5.3.1 Carbon Utilization by Forest and Agricultural Management -- 5.3.2 Ocean Fertilization -- 5.3.3 CO2 Capture by Microalgae -- 5.4 Electrochemical Ways for CO2 Capture -- 6 Conclusion -- References -- 14 Carbon Derivatives from CO2 -- Abstract -- 1 Introduction -- 2 Artificial Photoreduction -- 3 Electrochemical Reduction -- 4 Hydrogenation -- 5 Synthesis of Organic Carbonates -- 6 Reforming. , 7 Photocatalytic Reduction of CO2 with Water.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (474 pages)
    Edition: 1st ed.
    ISBN: 9783319527390
    DDC: 541.372
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Editors and Contributors -- 1 Organic-Inorganic Membranes Impregnated with Ionic Liquid -- Abstract -- 1 Introduction -- 2 Ionic Liquids: General Properties and Applications -- 3 Ionic Liquids as Electrolytes in Fuel Cells -- 4 Ionic Liquid Polymer Membranes for Fuel Cells -- 4.1 Ionic Liquid/Polymer Membranes -- 4.2 Polymerized Ionic Liquid Membranes -- 4.3 IL Gel and Composite Polymer Membranes -- 5 Conclusions -- Acknowledgements -- References -- 2 Organic/TiO2 Nanocomposite Membranes: Recent Developments -- Abstract -- 1 Introduction -- 2 TiO2-Polymer Electrolyte Membranes (PEMs) -- 2.1 Perfluorinated Organic-Inorganic Nanocomposite Polymer Electrolyte Membranes (PEMs) -- 2.2 Acid-Base Polymer Complex-Based Organic-Inorganic Nanocomposite PEMs -- 2.3 TiO2-Modified Polytetrafluoroethylene Membranes -- 2.4 Poly(ether ether ketone)-Based Nanocomposite PEMs -- 2.5 PANI Based Membranes -- 2.6 PES Based Membranes -- 2.7 Polysulfone-Based Membranes -- 2.8 TiO2 Solar Cells -- 2.9 Carbon Materials and Metal-Carbon Nanotube (CNTs)-TiO2 Composites -- 2.9.1 Carbon-TiO2 Composites -- 2.9.2 Graphene (GN)-TiO2 Composites -- 3 Conclusions -- Acknowledgements -- References -- 3 Organic/Silica Nanocomposite Membranes -- Abstract -- 1 Introduction -- 2 Silica Nanoparticle-Based Membranes -- 3 Conclusion -- References -- 4 Organic/Zeolites Nanocomposite Membranes -- Abstract -- 1 Introduction -- 2 Basic Concepts About Zeolites -- 3 Polymer-Zeolite Composite Membranes: The Role of the Zeolite -- 3.1 Influence of Si/Al Ratio -- 3.2 Proton Mobility in Zeolites -- 3.3 Internal and External Surface Area -- 3.4 Configurational Diffusion -- 3.5 Crystallite Size [17, 18] -- 3.6 Functionalization of Zeolite Surface -- 3.7 Selectivity, Proton Conductivity, and Permeability. , 4 Techniques for Producing Organic/Zeolite Nanocomposite Membranes -- 5 Synthetic Polymers/Zeolite Nanocomposite Membranes for PEMFCs -- 5.1 Route 1: Zeolite + Organic Monomers -- 5.2 Route 3: Inorganic Precursor + Organic Polymer -- 5.3 Route 4: Zeolite + Organic Polymer -- 6 Natural Polymers/Zeolite Nanocomposite Membranes for PEMFCs -- 7 Conclusions -- Acknowledgements -- References -- 5 Composite Membranes Based on Heteropolyacids and Their Applications in Fuel Cells -- Abstract -- 1 Introduction -- 2 Heteropolyacids Types and Structures -- 3 HPAs and Proton Transport in Fuel Cells -- 4 HPAs in PEM Fuel Cell -- 5 HPAs in High-Temperature and Low-Humidity PEMFC -- 6 HPAs in DMFC -- 7 Concluding Remarks and Future Perspectives -- Acknowledgements -- References -- 6 Organic/Montmorillonite Nanocomposite Membranes -- Abstract -- 1 Introduction -- 2 Membrane Fabrication Methods -- 2.1 Phase Inversion -- 2.2 Immersion Precipitation -- 2.3 Evaporation-Induced Phase Separation -- 3 Montmorillonite-Based Nanocomposites Membranes -- 4 Conclusion -- References -- 7 Electrospun Nanocomposite Materials for Polymer Electrolyte Membrane Methanol Fuel Cells -- Abstract -- 1 Introduction -- 2 Methanol Crossover and Low Proton Conductivity -- 3 Composite SPEEK -- 4 SPEEK-Clay Nanocomposite as PEM for DMFC -- 5 Morphology Types and the Importance of Exfoliated Surface Structure on DMFC Performance -- 6 Preparation of Exfoliated Nanocomposite Membranes -- 7 Electrospinning as a Membrane Morphological Modification Technique -- 8 Electrospun Polymer-Based Nanofiber Membranes for DMFC Application -- 9 Electrospinning Parameters -- 10 Future Directions and Conclusion -- References -- 8 A Basic Overview of Fuel Cells: Thermodynamics and Cell Efficiency -- Abstract -- 1 What Is a Fuel Cell? -- 2 Fuel Cell Structure and Classification -- 3 Fuel Cell Construction. , 4 PEMFC Types, Electrode Reactions, and Cell Potential -- 4.1 H2/O2 PEMFC -- 4.2 Direct Methanol Fuel Cells (DMFC) -- 4.3 Direct Ethanol Fuel Cells (DEFC) -- 4.4 Direct Formic Acid Fuel Cells (DFAFC) -- 4.5 Direct Borohydride Fuel Cells (DBFCs) -- 5 Fuel Cell Thermodynamics -- 5.1 Effect of Temperature -- 5.2 Effect of Pressure -- 5.3 Effect of Concentration of Reactant -- 6 Fuel Cell Efficiency -- 6.1 Losses in Actual System -- 6.2 Activation Overpotential -- 6.3 Ohmic Polarization Losses -- 6.4 Mass Transport Overpotential -- 7 Conclusion -- References -- 9 Organic/Inorganic and Sulfated Zirconia Nanocomposite Membranes for Proton-Exchange Membrane Fuel Cells -- Abstract -- 1 Introduction -- 1.1 Proton-Exchange Membranes (PEMs) -- 2 Organic/Inorganic Hybrid Membranes -- 3 Organic-Sulfated Metal Oxide Hybrid Membrane -- 4 Sulfated Zirconia Nanocomposite Membranes -- 5 Conclusion and Future Prospects -- Acknowledgements -- References -- 10 Electrochemical Promotional Role of Under-Rib Convection-Based Flow-Field in Polymer Electrolyte Membrane Fuel Cells -- Abstract -- 1 Introduction -- 2 General Description of Performance Improvements in PEMFCs -- 2.1 Proton Exchange Membrane -- 2.2 Electrode and Catalyst -- 2.3 Gas Diffusion Layer -- 2.4 Membrane Electrode Assembly -- 2.5 Bipolar Plate -- 2.6 Single Cell and Stack -- 2.6.1 Water and Heat Management -- 2.6.2 Fuel Crossover, Oxidation, and CO Poisoning -- 2.6.3 Scale-up and Long-Term Experiments -- 3 Structured Techniques for Flow-Field Optimization -- 3.1 Experimental Approaches to Flow-Field Optimization -- 3.1.1 Current Density Measurement -- 3.1.2 Flow Visualization -- 3.1.3 Polarization Curve Evaluation -- 3.2 Modeling Approaches to Flow Optimization -- 3.2.1 Computational Fluid Dynamic Modeling -- 3.2.2 Two-Phase Modeling for Water Management -- 3.2.3 Complex Flow-field Interaction Modeling. , 3.3 Validation of Experimental and Numerical Results -- 4 New Flow-field Optimization Approaches Utilizing Under-Rib Convection -- 4.1 Homogeneous Distribution of the Reactants -- 4.2 Uniformity of Temperature and Current Density Distributions -- 4.3 Facilitation of Liquid Water Discharge -- 4.4 Reduction in Pressure Drop -- 4.5 Improvement in Output Power -- 5 Summary -- References -- 11 Methods for the Preparation of Organic-Inorganic Nanocomposite Polymer Electrolyte Membranes for Fuel Cells -- Abstract -- 1 Introduction -- 2 Methods for Preparation of Nanocomposite Polymer Electrolyte Membranes -- 2.1 Blending of Nanoparticles in Polymer Matrix -- 2.1.1 Phase Inversion Method for Preparation of PEMs -- 2.1.2 Solution Casting Method -- 2.1.3 Hot Press -- 2.2 Doping or Infiltration and Precipitation of Nanoparticles and Precursors -- 2.3 Self-assembly of Nanoparticles -- 2.4 Non-hydrolytic Sol-Gel (NHSG) Method -- 2.5 Layer-by-Layer Fabrication Method -- 2.6 Nonequilibrium Impregnation Reduction -- 2.7 Surface Patterning Method -- 3 Future Directions and Conclusion -- References -- 12 An Overview of Chemical and Mechanical Stabilities of Polymer Electrolytes Membrane -- Abstract -- 1 Introduction -- 2 Durability of Polymer Electrolyte Membrane (PEM) -- 3 Proton Conductivity of PEM -- 4 Chemical Stabilities and Degradation of PEM -- 5 Mechanical Stability and Degradation of PEM -- 6 Conclusion -- Acknowledgements -- References -- 13 Electrospun Nanocomposite Materials for Polymer Electrolyte Membrane Fuel Cells -- Abstract -- 1 Introduction -- 2 Electrospinning Process -- 2.1 Electrospun Fibers -- 2.1.1 Poly(vinylidene fluoride) (PVDF) -- 2.1.2 Poly(vinyl alcohol) (PVA) -- 2.1.3 Poly(phenylene oxide) (PPO) -- 2.1.4 Poly(arylene ether)s -- 2.1.5 Poly(imide)s -- 2.1.6 Poly(benzimidazole) (PBI) -- 2.2 Crosslinking of Electrospun Fibers. , 2.3 Interface Bonding -- 3 Reducing Methanol Crossover -- 4 Improving Proton Conductivity -- 4.1 Electrospinning of Nafion -- 4.2 Aligned Nanofibers -- 5 Other Applications of Electrospinning in Fuel Cells -- 6 Conclusion -- References -- 14 Fabrication Techniques for the Polymer Electrolyte Membranes for Fuel Cells -- Abstract -- 1 Introduction -- 2 Recent Developments of PEM-Based on Organic-Inorganic Nanocomposites -- 3 Fabrication Techniques for the Preparation of PEM -- 3.1 Different Polymerization Routes -- 3.2 Plasma Methods -- 3.3 Sol-Gel Method -- 3.4 Ultrasonic Coating Technique -- 3.5 Phase Inversion Method -- 3.6 In Situ Reduction -- 3.7 Catalyst-Coated Membrane by Screen Printing Method -- 3.8 Solution Casting Method -- 3.9 Other Methods -- 4 Summary -- Acknowledgements -- References -- 15 Chitosan-Based Polymer Electrolyte Membranes for Fuel Cell Applications -- Abstract -- 1 Introduction -- 2 Chitosan: An Overview -- 3 Characterization of the Polymer Membrane and Their Desired Properties -- 4 Chitosan Based Membranes for Polymer Electrolyte -- 4.1 Chitosan Blend Polymer Electrolyte -- 4.2 Chitosan Cross-Linked Polymer Electrolyte -- 4.3 Chitosan Polymer Composite Based Polymer Electrode -- 5 Chitosan for Fuel Cell -- 6 Chitosan for Biofuel Cell -- 6.1 Microbial Biofuel Cell -- 6.2 Enzymatic Biofuel Cell -- 7 Conclusions -- Acknowledgements -- References -- 16 Fuel Cells: Construction, Design, and Materials -- Abstract -- 1 Introduction -- 2 Different Types of Fuel Cells -- 3 Construction and Design of Different FC -- 3.1 PEMFC -- 3.2 DMFC -- 3.3 AEMFC -- 3.4 PAFC -- 3.5 SOFC -- 3.6 MCFC -- 4 Catalysts for Different FCs -- 5 Materials and Methods for Preparation of PEM for Fuel Cells -- 6 Characterizations and Characteristic Properties of PEM for Different FC -- 7 Summary -- References. , 17 Proton Conducting Polymer Electrolytes for Fuel Cells via Electrospinning Technique.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...