GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Milton :Taylor & Francis Group,  (3)
  • Cham :Springer International Publishing AG,  (2)
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (299 pages)
    Edition: 1st ed.
    ISBN: 9783030678845
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 660.0286
    Language: English
    Note: Intro -- Contents -- 1 Biomass-Derived Polyurethanes for Sustainable Future -- Abstract -- 1 Introduction -- 1.1 Chemicals for Preparation of Polyurethanes -- 1.2 Importance of Green Chemicals and Synthesis Methods -- 1.3 Characteristics of Biomaterials for Polyurethanes -- 2 Bio-Oils as a Renewable Resource for Polyurethanes -- 2.1 Epoxidation and Ring-Opening Reactions -- 2.2 Hydroformation and Hydrogenation Reactions -- 2.3 Ozonolysis -- 2.4 Thiol-Ene Reaction -- 2.5 Transesterification Reaction -- 3 Terpenes as Green Starting Chemicals for Polyurethanes -- 4 Lignin for Green Polymers -- 5 Conclusion -- References -- 2 Mechanochemistry: A Power Tool for Green Synthesis -- Abstract -- 1 Introduction -- 2 History of Mechanochemistry -- 3 Principles of Mechanochemistry -- 3.1 Mechanisms and Kinetics of Mechanochemistry -- 3.2 Effects of Reaction Parameters -- 4 Mechanochemical Synthesis of Materials -- 4.1 Mechanochemical Synthesis of Co-crystals -- 4.2 Mechanochemistry in Inorganic Synthesis -- 4.3 Mechanochemistry in Organic Synthesis -- 4.4 Mechanochemistry in Metal-Organic Frameworks (MOFs) -- 4.5 Mechanochemistry in Porous Organic Materials (POMs) -- 4.6 Mechanochemical Synthesis of Polymers -- 5 Conclusions -- References -- 3 Future Trends in Green Synthesis -- Abstract -- 1 Introduction -- 2 Green Chemistry Metrics -- 2.1 Atom Economy (AE) -- 2.2 Environmental Factor (E Factor) -- 2.3 Process Mass Intensity (PMI) -- 2.4 Reaction Mass Efficiency (RME) -- 3 Application of Green Concept in Synthesis -- 3.1 Solvent-Based Organic Synthesis -- 3.2 Aqueous Medium -- 3.2.1 Micellar Media -- 3.2.2 Different Non-Aqueous Media -- Ionic Liquids -- Fluorous Media -- Supercritical Fluid -- Solvent-Free Synthesis -- 4 Future Trends -- References -- 4 Plant-Mediated Green Synthesis of Nanoparticles -- Abstract -- 1 Introduction. , 2 Methods for Metallic Nanoparticle Biosynthesis -- 3 Green Biosynthesis of Metallic NPs -- 3.1 Gold Nanoparticles -- 3.2 Platinum Nanoparticles -- 3.3 Silver Nanoparticles -- 3.4 Zinc Oxide Nanoparticles -- 3.5 Titanium Dioxide Nanoparticles -- 4 Different Parts Used for the Synthesis of Metallic Nanoparticles -- 4.1 Fruit -- 4.2 Stem -- 4.3 Seeds -- 4.4 Flowers -- 4.5 Leaves -- 5 Conclusions -- References -- 5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- Abstract -- 1 Introduction -- 2 Advantages of Green Synthesis Methods -- 3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 3.1 Biological Methods -- 3.1.1 Using Microorganism -- Microorganisms as Reactant -- Microorganism as Template -- 3.1.2 Using Plant -- Plant as Reactant -- Plant as Template -- 3.1.3 Using Other Green Templates -- 3.2 Physical and Chemical Methods -- 3.2.1 Green Techniques -- 3.2.2 Green Reagents -- 3.2.3 Green Solvents -- 4 Growth Mechanism of Metal and Metal Oxide HSNs -- 4.1 Biological Method -- 4.1.1 Biomolecules as Reagents -- 4.1.2 Biomolecules as Templates -- 4.2 Physical and Chemical Methods -- 5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 5.1 Biomedical Application -- 5.2 Environmental Remediation -- 5.2.1 Wastewater Treatment -- 5.2.2 Energy Storage -- 5.2.3 Sensing -- 6 Present Challenges and Future Prospect -- Acknowledgements -- References -- 6 Bioprivileged Molecules -- Abstract -- 1 Introduction -- 2 Four Carbon 1,4-Diacids -- 2.1 Succinic Acid -- 2.2 Fumaric Acid -- 2.3 Malic Acid -- 3 Furan 2,5-Dicarboxylic Acid (FDCA) -- 4 3-Hydroxypropionic Acid (3-HPA) -- 5 Glucaric Acid -- 6 Glycerol -- 7 Aspartic Acid -- 8 Itaconic Acid -- 9 3-Hydroxybutyrolactone -- 10 Sorbitol -- 11 Xylitol -- 12 Glutamic Acid -- 13 Levulinic Acid. , 14 Emerging Molecules -- 15 Conclusion -- References -- 7 Membrane Reactors for Green Synthesis -- Abstract -- 1 Introduction -- 2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL -- 2.1 Ionic Liquid Media Effect on Free CLAB -- 2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL -- 2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL -- 3 Mixed Ionic Electronic MR -- 3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane -- 3.2 Steam Flow Effect on Side I of Membrane -- 3.3 Temperature Effect -- 4 Green Synthesis of Methanol in a Membrane Reactor -- 5 Green Fuel Energy -- 5.1 Green H2 Energy -- 5.2 Biofuel Energy -- 5.3 Green Fuel Additive -- 6 Biocatalyst Membrane Reactors -- 7 Photocatalytic Membrane Reactors -- 8 Conclusions -- References -- 8 Application of Membrane in Reaction Engineering for Green Synthesis -- Abstract -- 1 Introduction -- 2 Applications of Membrane Reactors in Reaction Engineering -- 2.1 Syngas Production -- 2.2 Hydrogen Production -- 2.3 CO2 Thermal Decomposition -- 2.4 Higher Hydrocarbon Production -- 2.5 Methane Production -- 2.6 Ammonia Production -- 3 Environmental Impacts -- 4 Conclusions and Future Recommendations -- Acknowledgements -- References -- 9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes -- Abstract -- 1 Introduction -- 2 Principle -- 3 Enzymes Involved in Light-Driven Catalysis -- 3.1 Heme-Containing Enzymes -- 3.1.1 Cytochrome P450 -- 3.1.2 Peroxidases -- 3.2 Flavin-Based Enzyme -- 3.2.1 Baeyer-Villiger Monooxygenases -- 3.2.2 Old Yellow Enzymes -- 3.3 Metal Cluster-Centered Enzyme -- 3.3.1 Hydrogenases -- 3.3.2 Carbon Monoxide Dehydrogenases -- 4 Nanoparticle-Based Activation of Enzyme -- 5 Applications in Photo-Biocatalysis -- 5.1 Isolated Enzymes/Cell Lysates -- 6 Summary and Future Scope -- References. , 10 Biomass-Derived Carbons and Their Energy Applications -- Abstract -- 1 Introduction -- 2 Types of Biomass Materials -- 2.1 Plant-Based Carbons -- 2.2 Fruit-Based Carbons -- 2.3 Animal-Based Carbons -- 2.4 Microorganism-Based Carbons -- 3 Activation of Biomass-Derived Carbons -- 3.1 Activation of Carbons -- 3.1.1 Chemical Activation of Carbons -- 3.1.2 Carbon Activation Through Physical Method -- 3.1.3 Self-activation of Carbons -- 3.2 Pyrolysis Techniques -- 3.2.1 Effect of Temperature -- 3.2.2 Effect of Residence Time -- 3.2.3 Heating Rate Effect -- 3.2.4 Size of the Particle -- 3.3 Microwave-Assisted Technique -- 3.4 Carbonization by Hydrothermal -- 3.5 Ionothermal Carbonization -- 3.6 Template Method -- 4 Energy Storage Applications of Biomass Carbons -- 4.1 Supercapacitors -- 4.2 Li/Na-Ion Batteries -- 5 Conclusion -- Acknowledgements -- References -- 11 Green Synthesis of Nanomaterials via Electrochemical Method -- Abstract -- 1 Introduction -- 2 Green Synthesis -- 2.1 Application of Biology in Green Synthesis -- 2.2 Green Synthesis Based on the Application of Solvent -- 3 Computational Data and Analysis -- 4 Electrochemical Method -- 5 Electrodeposition Method -- 5.1 Experimental Setup for Electrodeposition -- 6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis -- 7 Conclusion -- References -- 12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments -- Abstract -- 1 Introduction -- 2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs]. -- 2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations -- 2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions. , 2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations -- 2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines -- 2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles -- 2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines -- 2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR) -- 2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions -- 2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O -- 2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines -- 2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines -- 2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs -- 3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs] -- 3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway -- 3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway -- 3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy -- 3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations -- 3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions -- 3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides. , 3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (354 pages)
    Edition: 1st ed.
    ISBN: 9783030728779
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 628.532
    Language: English
    Note: Intro -- Contents -- 1 Chemical Valorization of CO2 -- Abstract -- 1 Introduction -- 2 CO2-Derived Fuels and Chemicals -- 2.1 Methane -- 2.2 Methanol -- 2.3 Dimethyl Ether -- 2.4 Formic Acid -- 2.5 Ethanol -- 2.6 CO2-Fischer-Tropsch Liquid Fuels -- 2.7 Carbon Monoxide-Syngas -- 3 CO2 Chemically Derived Materials -- 3.1 Polymers -- 3.2 CO2-Derived Building Materials -- 4 Conclusions -- References -- 2 Progress in Catalysts for CO2 Reforming -- Abstract -- 1 Introduction -- 2 Technologies for Capturing and Storing Carbon Dioxide -- 3 Technologies for Using Carbon Dioxide -- 4 Methane Dry Reforming Process -- 4.1 Progress in Catalysts for Methane Dry Reforming (1928-1989) -- 4.2 Progress in Catalysts for Methane Dry Reforming (1990-1999) -- 4.3 Progress in Catalysts for Methane Dry Reforming (2000-2009) -- 4.4 Progress in Catalysts for Methane Dry Reforming (2010-2019) -- 4.5 Current Status in the Catalysts for Methane Dry Reforming -- 5 Dry Reforming of Other Compounds -- 6 Use of Steam or Oxygen in Dry Reforming of Methane and Other Compounds -- 7 Solid Oxide Fuel Cells Fueled with Biogas -- 8 Commercialization of Dry Reforming Process -- 9 Conclusions -- References -- 3 Fuel Generation from CO2 -- Abstract -- 1 Introduction -- 2 Approaches for Directly Converting CO2 to Fuels -- 2.1 Pure CO2 Decomposition Technology -- 2.2 Reagent-Based CO2 Conversion Technology -- 2.2.1 Dry Deformation of Methane Technology -- 2.2.2 Catalytic Hydrogenation of CO2 -- 3 Biological CO2 Fixation for Fuels -- 3.1 Thermochemical Conversion -- 3.1.1 Torrefaction -- 3.1.2 Pyrolysis -- 3.1.3 Thermochemical Liquefaction -- 3.1.4 Gasification -- 3.1.5 Direct Combustion -- 3.2 Biochemical Conversion -- 3.2.1 Biodiesel -- 3.2.2 Bioethanol -- 3.2.3 Biomethane -- 3.2.4 Biohydrogen -- 3.2.5 Bioelectricity -- 3.2.6 Volatile Organic Compounds. , 4 Conclusion and Future Perspectives -- References -- 4 Thermodynamics of CO2 Conversion -- Abstract -- 1 Introduction -- 2 Carbon Dioxide Capture -- 3 Carbon Dioxide Utilisations -- 4 Thermodynamic Considerations -- 5 Thermodynamics of CO2 -- 5.1 The Thermodynamic Attainable Region (AR) -- 5.2 Using Hess's Law to Transform the Extents to G-H AR @ 25˚C -- 5.3 Increasing Temperature on G-H AR -- 6 Conclusion -- Acknowledgements -- References -- 5 Enzymatic CO2 Conversion -- Abstract -- 1 Introduction -- 1.1 CO2 as a Greenhouse Gas -- 1.2 Carbon Capture, Storage, and Utilization -- 1.3 CO2 as a Chemical Feedstock -- 1.4 CO2 Conversion with Enzymes -- 2 Natural Conversion of CO2 in Cells -- 3 Enzymatic Conversion of CO2 in Cells -- 3.1 Conversion of CO2 by a Single Enzyme (in vitro) -- 3.1.1 Formate Dehydrogenase -- 3.1.2 Carbonic Anhydrase -- 3.1.3 Carbon Monoxide Dehydrogenase -- 3.1.4 Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO) -- 3.2 Conversion of CO2 by a Multi-Enzyme Cascade in vitro -- 3.3 Other Ways (Photocatalytic CO2 Methanation) -- 4 Industrial Applications -- 4.1 Alcohols -- 4.2 Organic Acids -- 4.3 Terpenoids -- 4.4 Fatty Acids -- 4.5 Polyhydroxyalkanoates -- 4.6 Calcium Carbonate -- 5 Summary and Future Prospects -- References -- 6 Electrochemical CO2 Conversion -- Abstract -- 1 Introduction -- 2 Electrochemical CO2 Conversion -- 2.1 Fundamentals of the Process -- 2.2 Variants of Electrochemical Conversion of CO2 -- 2.2.1 Aqueous Electrolytes -- 2.2.2 Non-Aqueous Electrolytes -- 2.2.3 Solid Oxide Electrolytes -- 2.2.4 Molten Salt Electrolytes -- 3 Electrochemical CO2 Conversion from Molten Salts -- 3.1 Present State of Electrochemical Reduction of CO2in Molten Salts for the Production of Solid-Phase Carbonaceous Nanomaterials -- 3.2 Direct Electrochemical Reduction of CO2 in Chloride Melts. , 3.3 Indirect Electrochemical Reduction of CO2 in Molten Salts -- 3.4 The Mechanisms of Electrode Reactions Occurring at the Cathode and Anode -- 3.5 Prospects for CO2 Conversion in Molten Salts -- 4 Conclusions -- References -- 7 Supercritical Carbon Dioxide Mediated Organic Transformations -- Abstract -- 1 Introduction -- 2 Applications of Supercritical Carbon Dioxide -- 2.1 Hydrogenation Reactions -- 2.2 Asymmetric Hydrogenation Reactions -- 2.3 Diels-Alder Reaction -- 2.4 Coupling Reaction -- 2.5 Oxidation Reaction -- 2.6 Baeyer-Villiger Oxidation Reaction -- 2.7 Iodination Reaction -- 2.8 Polymerization Reaction -- 2.9 Carbonylation Reaction -- 2.9.1 Acetalization Reaction -- 2.9.2 Olefin Metathesis Reaction -- 2.9.3 Synthesis of heterocycles -- Synthesis of α-alkylidene Cyclic Carbonates -- Synthesis of 4-Methyleneoxazolidin-2-Ones -- Synthesis of 5-Alkylidene-1, 3-Oxazolidin-2-Ones -- Synthesis of 6-Phenyl-3a, 4-Dihydro-1H-Cyclopenta[C]furan-5(3H)-One -- Synthesis of 3, 4, 5, 6-Tetraethyl-2H-Pyran-2-One -- 3 Conclusions -- Acknowledgements -- References -- 8 Theoretical Approaches to CO2 Transformations -- Abstract -- 1 Carbon Dioxide Properties -- 2 CO2 Transformation as an Undeniable Necessity -- 3 CO2 Activation -- 3.1 Methodologies of CO2 Activation -- 4 Theoretical Insight of CO2 Transformation -- 4.1 The Theoretical Approach in CO2 Conversion to Value-Added Chemicals -- 4.1.1 Carbon Monoxide -- 4.1.2 Methane -- 4.1.3 Methanol -- 4.1.4 Formic Acid -- 4.1.5 Heterocycles -- Cyclic Carbonates -- Cyclic Carbamate -- Quiznazoline-2,4(1H,3H)-Dione -- 4.1.6 Summary and Outlook -- 5 Theoretical Designing of Novel Catalysts Based on DFT Studies -- 5.1 Theoretical Designing: Problems and Opportunities -- 6 Conclusion -- References -- 9 Carbon Dioxide Conversion Methods -- Abstract -- 1 Introduction -- 2 Molecular Structure of CO2. , 3 Thermo-Kinetics of CO2 Conversion -- 4 CO2 Conversion Methods and Products -- 4.1 Fischer-Tropsch Gas-to-Liquid (GTL) -- 4.2 Mineralization -- 4.3 Chemical Looping Dry Reforming -- 4.4 Enzymatic Conversion -- 4.5 Photocatalytic and Photo-Electrochemical Conversion -- 4.6 Thermo-Chemical Conversion -- 4.7 Hydrogenation -- 4.8 Reforming -- 5 Economic Assessment of CO2Alteration to Valuable Products -- 5.1 Syngas -- 5.2 Methanol -- 5.3 Formic Acid -- 5.4 Urea -- 5.5 Dimethyl Carbonate (DMC) -- 6 Conclusions and Future Perspective -- Acknowledgements -- References -- 10 Closing the Carbon Cycle -- Abstract -- 1 Introduction -- 2 Methods to Capture CO2 -- 3 CO2 Capture Technologies -- 4 CO2 Capture from the Air -- 5 Biomass and Waste-Based Chemicals -- 6 Advantages of Biomass-Based Chemicals -- 7 Replacement of Carbon-Based Energy Resources -- 8 Biomass Energy -- 9 Wind Energy -- 10 Solar Energy -- 11 Ocean Energy -- 12 Geothermal Energy -- 13 Hydrothermal Energy -- 14 Conclusions -- References -- 11 Carbon Dioxide Utilization to Energy and Fuel: Hydrothermal CO2 Conversion -- Abstract -- 1 Introduction -- 2 Hydrothermal CO2 Conversion -- 2.1 Metals and Catalysts as Reductant -- 2.2 Organic Wastes as Reductant -- 2.3 Inorganic Wastes as Reductant -- 2.4 Biomass as Reductant -- 3 Conclusion -- References -- 12 Ethylenediamine-Carbonic Anhydrase Complex for CO2 Sequestration -- 1 Introduction -- 2 An Overview of Carbonic Anhydrase (CA) -- 3 Mechanism of Action for Biocarbonate Formation -- 4 Historical Background of Carbonic Anhydrase -- 5 Sources of Carbonic Anhydrase -- 6 Carbonic Anhydrase in Microorganism -- 6.1 Micrococcus Lylae, Micrococcus Luteus, and Pseudomonas Fragi -- 6.2 Bacillus Subtilis and Citrobacter Freundii -- 6.3 Neisseria Gonorrhoeae -- 6.4 Helicobacter Pylori -- 7 Plant Carbonic Anhydrase -- 8 Overview of CO2. , 9 Sources of Carbon Dioxide (CO2) -- 10 Effect of Carbon Dioxide (CO2) -- 11 Carbon Dioxide Capturing -- 12 Carbon Dioxide (CO2) Sequestration -- 13 Carbon Dioxide (CO2) Sequestration by Carbonic Anhydrase -- 14 Separation System for CO2 Sequestration -- 15 Cryogenic Separation -- 16 Membrane Separation -- 17 Absorption -- 18 Adsorption -- 19 Bioreactors for CO2 Sequestration -- 20 Carbonic Anhydrase Immobilization -- 21 Ethylenediamine for Carbon Dioxide (CO2) Capturing -- 22 CO2 Capturing and Sequestration with Ethylenediamine-Carbonic Anhydrase Complex -- 23 CO2 Capturing and Sequestration Design and Optimization: Challenges and Future Prospects -- 24 Conclusion -- References -- 13 Green Pathway of CO2 Capture -- Abstract -- 1 Introduction -- 2 Molecular Structure of Carbon Dioxide -- 3 CO2 Capture System -- 3.1 Post-Combustion System -- 3.2 Pre-Combustion System -- 3.3 Oxy-Fuel Combustion System -- 4 Absorption Technology -- 4.1 Green Absorption with Ionic Liquids -- 4.1.1 Properties and Uses of Ionic Liquids -- 4.1.2 CO2 Solubility in PILs -- 4.1.3 CO2 Absorption in PILs with Carboxylate Anion -- 4.2 Reaction Mechanism Involved in CO2-Absorption -- 5 Adsorption Technology -- 5.1 Organic Adsorbents -- 5.1.1 Activated Charcoal -- 5.1.2 Biochar -- 5.1.3 Metal-Organic Frameworks (MOFs) -- 5.2 Other CO2 Adsorbents -- 5.2.1 Metal Oxide-Based Absorbents -- 5.2.2 Zeolites -- 5.3 Biological Processes of CO2Sequestration -- 5.3.1 Carbon Utilization by Forest and Agricultural Management -- 5.3.2 Ocean Fertilization -- 5.3.3 CO2 Capture by Microalgae -- 5.4 Electrochemical Ways for CO2 Capture -- 6 Conclusion -- References -- 14 Carbon Derivatives from CO2 -- Abstract -- 1 Introduction -- 2 Artificial Photoreduction -- 3 Electrochemical Reduction -- 4 Hydrogenation -- 5 Synthesis of Organic Carbonates -- 6 Reforming. , 7 Photocatalytic Reduction of CO2 with Water.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Porous materials. ; Electronic books.
    Description / Table of Contents: Internationally assembled experts in the field describe developments and advances in synthesis, tuning parameters, and applications of porous polymers. Chapter topics span basic studies, novel issues, and applications addressing all aspects in a one-stop reference on porous polymers.
    Type of Medium: Online Resource
    Pages: 1 online resource (277 pages)
    Edition: 1st ed.
    ISBN: 9781000567168
    DDC: 547/.7
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1: Introduction to Porous Polymers -- 1.1 Introduction -- 1.2 Types of Porous Polymers -- 1.3 Synthetic Methods for Porous Polymer Network -- 1.4 Conclusion -- References -- Chapter 2: Hyper-crosslinked Polymers -- 2.1 Introduction -- 2.1.1 Overview -- 2.1.2 Porous Polymer -- 2.1.3 Crosslinking -- 2.2 Hyper-crosslinked Polymers -- 2.3 Synthesis Methods of HCPs -- 2.3.1 Post-crosslinking Polymer Precursors -- 2.3.2 Direct One-Step Polycondensation -- 2.3.3 Knitting Rigid Aromatic Building Blocks by External Crosslinkers -- 2.4 Structure and Morphology of HCPs -- 2.4.1 Nanoparticles -- 2.4.2 Hollow Capsules -- 2.4.3 2D Membranes -- 2.4.4 Monoliths -- 2.5 HCPs Properties -- 2.5.1 Polymer Surface -- 2.5.1.1 Hydrophilicity -- 2.5.1.2 Hydrophobicity -- 2.5.1.3 Amphiphilicity -- 2.5.2 Porosity and Surface Area -- 2.5.3 Swelling Behavior -- 2.5.4 Thermomechanical Properties -- 2.6 Functionalization of HCPs -- 2.7 Characterization of HCPs -- 2.7.1 Compositional and Structural Characterization -- 2.7.2 Morphological Characterization -- 2.7.3 Porosity and Surface Area Analysis -- 2.7.4 Other Analysis -- 2.8 Applications -- 2.8.1 Storage Capacity -- 2.8.1.1 Storage of Hydrogen -- 2.8.1.2 Storage of Methane -- 2.8.1.3 CO 2 Capture -- 2.8.2 Environmental Remediation -- 2.8.3 Heterogeneous Catalysis -- 2.8.4 Drug Delivery -- 2.8.5 Sensing -- 2.8.6 Other Applications -- 2.9 Conclusion -- References -- Chapter 3: Porous Ionic Polymers -- 3.1 Introduction: A Distinctive Feature of the Porous Structure of Ionic Polymers -- 3.2 Ionic Polymers in Dry State -- 3.3 Ionic Polymers in Swollen State: Hsu-Gierke Model -- 3.4 Modifications of Hsu-Gierke Model: Hydration of Ion Exchange Polymers. , 3.5 Methods for Research of Porous Structure of Ionic Polymers -- 3.5.1 Nitrogen Adsorption-Desorption -- 3.5.2 Mercury Intrusion -- 3.5.3 Adsorption-Desorption of Water Vapor -- 3.5.4 Differential Scanning Calorimetry -- 3.5.5 Standard Contact Porosimetry -- 3.6 Conclusions -- References -- Chapter 4: Analysis of Qualitative and Quantitative Criteria of Porous Plastics -- 4.1 Introduction -- 4.2 Sorting of Porous Polymers -- 4.2.1 Macroporous Polymers -- 4.2.2 Microporous Polymers -- 4.2.3 Mesoporous Polymers -- 4.3 Methodology -- 4.3.1 AHP Analysis -- 4.4 Conclusions -- References -- Chapter 5: Novel Research on Porous Polymers Using High Pressure Technology -- 5.1 Background -- 5.2 Porous Polymers Based on Natural Polysaccharides -- 5.3 Parameters Involved in the Porous Polymers Processing by High Pressure -- 5.4 Supercritical Fluid Drying for Porous Polymers Processing -- 5.5 Porous Polymers for Foaming and Scaffolds by Supercritical Technology -- 5.6 Supercritical CO 2 Impregnation in Porous Polymers for Food Packaging -- 5.7 Synthesis of Porous Polymers by Supercritical Emulsion Templating -- 5.8 Porous Polymers as Supports for Catalysts Materials by Supercritical Fluid -- 5.9 Porous Metal-Organic Frameworks Polymers by Supercritical Fluid Processing -- 5.10 Concluding Remarks -- Acknowledgments -- References -- Chapter 6: Porous Polymer for Heterogeneous Catalysis -- 6.1 Introduction -- 6.2 Stability and Functionalization of POPs -- 6.3 Strategies for Synthesizing POP Catalyst -- 6.3.1 Co-polymerization -- 6.3.1.1 Acidic and Basic Groups -- 6.3.1.2 Ionic Groups -- 6.3.1.3 Ligand Groups -- 6.3.1.4 Chiral Groups -- 6.3.1.5 Porphyrin Group -- 6.3.2 Self-polymerization -- 6.3.2.1 Organic Ligand Groups -- 6.3.2.2 Organocatalyst Groups -- 6.3.2.3 Ionic Groups -- 6.3.2.4 Chiral Ligand Groups -- 6.3.2.5 Porphyrin Groups. , 6.4 Applications of Various Porous Polymers -- 6.4.1 CO 2 Capture and Utilization -- 6.4.1.1 Ionic Liquid/Zn-PPh 3 Integrated POP -- 6.4.1.1.1 Mechanism of the Cycloaddition Reaction -- 6.4.1.2 Triphenylphosphine-based POP -- 6.4.2 Energy Storage -- 6.4.3 Heterogeneous Catalysis -- 6.4.3.1 Cu(II) Complex on Pyridine-based POP for Nitroarene Reduction -- 6.4.3.2 POP-supported Rhodium for Hydroformylation of Olefins -- 6.4.3.3 Ni(II)-metallated POP for Suzuki-Miyaura Crosscoupling Reaction -- 6.4.3.4 Ru-loaded POP for Decomposition of Formic Acid to H 2 -- 6.4.3.5 Porphyrin-based POP to Support Mn Heterogeneous Catalysts for Selective Oxidation of Alcohols -- 6.4.3.5.1 Mechanism of the Oxidation of Alcohols by TFP-DPMs -- 6.4.4 Photocatalysis -- 6.4.4.1 Conjugated Porous Polymer Based on Phenanthrene Units -- 6.4.4.2 (dipyrrin)(bipyridine)ruthenium(II) Visible Light Photocatalyst -- 6.4.4.3 Carbazole-based CMPs for C-3 Functionalization of Indoles -- 6.4.4.3.1 Mechanism of C-3 Formylation of N-methylindole by CMP-CSU6 Polymer Catalyst -- 6.4.4.3.2 The Mechanism for C-3 Thiocyanation of 1H-indole -- 6.4.5 Electrocatalysis -- 6.4.5.1 Redox-active N-containing CPP for Oxygen Reduction Reaction (ORR) -- References -- Chapter 7: Triazine Porous Frameworks -- 7.1 Introduction -- 7.2 Synthetic Procedures of CTFs and Their Structural Designs -- 7.2.1 Ionothermal Trimerization Strategy -- 7.2.2 High Temperature Phosphorus Pentoxide (P 2 O 5)-Catalyzed Method -- 7.2.3 Amidine-based Polycondensation Methods -- 7.2.4 Superacid Catalyzed Method -- 7.2.5 Friedel-Crafts Reaction Method -- 7.3 Applications of CTFs -- 7.3.1 Adsorption and Separation -- 7.3.1.1 CO 2 Capture and Separation -- 7.3.1.2 The Removal of Pollutants -- 7.3.2 Heterogeneous Catalysis -- 7.3.3 Applications for Energy Storage and Conversion -- 7.3.3.1 Metal-Ion Batteries -- 7.3.3.2 Supercapacitors. , 7.3.4 Electrocatalysis -- 7.3.5 Photocatalysis -- 7.3.6 Other Applications of CTFs -- References -- Chapter 8: Advanced Separation Applications of Porous Polymers -- 8.1 Introduction -- 8.2 Advanced Separation Applications -- 8.3 Separation through Adsorption -- 8.4 Water Treatment -- 8.5 Conclusion -- Abbreviations -- References -- Chapter 9: Porous Polymers for Membrane Applications -- 9.1 Introduction -- 9.2 Introduction to Synthesis of Porous Polymeric Particles -- 9.3 Preparation of Porous Polymeric Membrane -- 9.4 Morphology of Membrane and Its Parameters -- 9.5 Emerging Applications of Porous Polymer Membranes -- 9.6 Polysulfone and Polyvinylidene Fluoride Used as Porous Polymers for Membrane Application -- 9.6.1 Polysulfone Membranes -- 9.6.2 Polyvinylidene Fluoride Membranes -- 9.7 Use of Porous Polymeric Membranes for Sensing Application -- 9.8 Use of Porous Polymeric Electrolytic Membranes Application -- 9.9 Use of Porous Polymeric Membrane for Numerical Modeling and Optimization -- 9.10 Use of Porous Polymers for Biomedical Application -- 9.11 Use of Porous Polymeric Membrane in Tissue Engineering -- 9.12 Use of Porous Polymeric Membrane in Wastewater Treatment -- 9.13 Use of Porous Polymeric Membrane for Dye Rejection Application -- 9.14 Porous Polymeric Membrane Antifouling Application -- 9.15 Porous Polymeric Membrane Used for Fuel Cell Application -- 9.16 Conclusion -- References -- Chapter 10: Porous Polymers in Solar Cells -- 10.1 Introduction -- 10.1.1 Si-based Solar Cells -- 10.1.2 Thin-film Solar Cells -- 10.1.3 Organic Solar Cells -- 10.2 Porous Polymers in DSSCs -- 10.2.1 Porous Polymers in Electrodes -- 10.2.2 Porous Polymer as a Counter Electrode -- 10.2.3 Porous Polymers in TiO 2 Photoanode -- 10.2.4 Porous Polymers in Electrolyte -- 10.2.5 Porous Polymer as Energy Conversion Film. , 10.2.5.1 Polyvinylidene Fluoride-co-Hexafluoropropylene (PVDF-HFP) Membranes -- 10.2.5.2 Pyridine-based CMPs Aerogels (PCMPAs) -- 10.2.6 Porous Polymers in Coating of Solar Cell -- 10.2.7 Porous Polymers as Photocatalyst or Electrocatalyst -- 10.3 Perovskite Solar Cells -- 10.3.1 Porous Polymers in Electron Transport Layers -- 10.3.2 Porous Polymers in Hole Transport Layers -- 10.3.3 Porous Polymer as Energy Conversion Film -- 10.3.4 Porous Polymers as Interlayers -- 10.3.5 Porous Polymers in Morphology Regulations -- 10.4 Porous Polymers in Silicon Solar Cell -- 10.5 Miscellaneous -- 10.5.1 Porous Polymers in Solar Evaporators -- 10.5.2 Charge Separation Systems in Solar Cells -- 10.5.3 Porous Polymers in ZnO Photoanode -- 10.6 Conclusions -- References -- Chapter 11: Porous Polymers for Hydrogen Production -- 11.1 Introduction -- 11.1.1 Approaches Utilized for the Generation of Porous Polymers (PPs) -- 11.1.1.1 Infiltration -- 11.1.1.2 Layer-by-Layer Assembly (LbL) -- 11.1.1.3 Conventional Polymerization -- 11.1.1.4 Electrochemical Polymerization -- 11.1.1.5 Controlled/Living Polymerization (CLP) -- 11.1.1.6 Macromolecular Design -- 11.1.1.7 Self-assembly -- 11.1.1.8 Phase Separation -- 11.1.1.9 Solid and Liquid Templating -- 11.1.1.10 Foaming -- 11.2 Various Porous Polymers for H 2 Production -- 11.2.1 Photocatalysts Based on Conjugated Microporous Polymers -- 11.2.2 Conjugated Microporous Polymers -- 11.2.3 Porous Conjugated Polymer (PCP) -- 11.2.4 Membrane Reactor -- 11.2.5 Paper-Structured Catalyst with Porous Fiber-Network Microstructure -- 11.2.6 Porous Organic Polymers (POPs) -- 11.2.7 PEM Water Electrolysis -- 11.2.8 Microporous Inorganic Membranes -- 11.2.9 Hybrid Porous Solids for Hydrogen Evolution -- 11.3 Other Alternatives for Hydrogen Production -- 11.3.1 Metal-Organic Frameworks (MOFs) -- 11.3.2 Covalent Organic Frameworks. , 11.3.3 Photochemical Device.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (353 pages)
    Edition: 1st ed.
    ISBN: 9780429510885
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Contributors -- Editors -- Chapter 1. Polythiophene-Based Battery Applications -- 1.1 Introduction -- 1.2 Synthesis -- 1.2.1 Electrochemical Polymerization -- 1.2.2 Chemical Synthesis -- 1.3 Battery Applications of PTs -- 1.3.1 PTs as Cathodic Materials -- 1.3.1.1 PTs as Active Materials -- 1.3.1.2 PTs as Binder -- 1.3.1.3 PTs as Conduction-Promoting Agents -- 1.3.2 PTs as Air Cathode -- 1.3.2.1 Li-Air Batteries -- 1.3.2.2 Aluminum-Air Battery -- 1.3.2.3 Zinc-Air Battery -- 1.3.3 PTs as Anodic Materials -- 1.3.3.1 PTs as Active Materials for Anode -- 1.3.3.2 PTs as Binders -- 1.3.3.3 PTs as Conduction Promoting Agents (CPAs) -- 1.3.4 PTs as Battery Separators -- 1.3.4.1 Li-Ion Batteries -- 1.3.4.2 Li-S Batteries -- 1.3.4.3 Li-O2 Batteries -- 1.3.5 PTs as Electrolytes -- 1.3.6 PTs as Coin-cell Cases -- 1.3.7 PTs as Li-O2 Catalyst -- 1.4 Conclusion -- References -- Chapter 2. Synthetic Strategies and Significant Issues for Pristine Conducting Polymers -- 2.1 Introduction -- 2.2 Conduction Mechanism -- 2.3 Synthesis of Conducting Polymers -- 2.3.1 Synthesis through Polymerization -- 2.3.1.1 Chain-Growth Polymerization -- 2.3.1.2 Step-Growth Polymerization -- 2.3.2 Synthesis by Doping with Compatible Dopants -- 2.3.2.1 Types of Doping Agents -- 2.3.2.2 Doping Techniques -- 2.3.2.3 Mechanism of Doping -- 2.3.2.4 Influence of Doping on Conductivity -- 2.3.3 Electrochemical Polymerization -- 2.3.4 Photochemical Synthesis -- 2.4 Various Issues for Synthesis -- 2.4.1 Vapor-Phase Polymerization -- 2.4.2 Hybrid Conducting Polymers -- 2.4.3 Nanostructure Conducting Polymers -- 2.4.4 Narrow Bandgap Conducting Polymers -- 2.4.5 Synthesis in Supercritical CO2 -- 2.4.6 Biodegradability and Biocompatibility of Conducting Polymers -- 2.5 Applications. , 2.6 Future Scope for Applications -- 2.7 Conclusions -- Abbreviations -- References -- Chapter 3. Conducting Polymer Derived Materials for Batteries -- 3.1 Introduction -- 3.2 Theory -- 3.3 Discussion on Conducting Polymer-Derived Materials -- 3.3.1 PEDOT Derivatives -- 3.3.1.1 Structural Properties -- 3.3.1.2 Electrochemical Studies of PEDOT and Its Derivatives -- 3.3.1.3 Magnetic Properties -- 3.3.2 PPy for the Energy-Storage Devices -- 3.3.2.1 Structural Property of PPy -- 3.3.2.2 Electrochemical Properties of Polypyrrol -- 3.3.2.3 Magnetic Properties -- 3.3.3 PANI for Battery Application -- 3.3.3.1 Structural Properties -- 3.3.3.2 Electrochemical Properties of PANI for Battery Electrode -- 3.3.3.3 Magnetic Properties of PANI -- 3.4 Summary and Conclusions -- References -- Chapter 4. An Overview on Conducting Polymer-Based Materials for Battery Application -- 4.1 Introduction -- 4.2 Principle of Conducting Polymer Battery -- 4.3 Assortment of Conducting Polymer Electrodes for Battery Application -- 4.4 Mechanism of Conducting Polymers in Rechargeable Batteries -- 4.5 Organic Conducting Polymer for Lithium-ion Battery -- 4.5.1 Types of Organic Conducting Polymers -- 4.6 Synthesis of Conducting Polymer -- 4.6.1 Hard-template Method -- 4.6.2 Soft-template Method -- 4.6.3 Template-free Technique -- 4.6.4 Self-Assembly or Interfacial -- 4.6.5 Electrospinning -- 4.7 Characterization -- 4.7.1 Surface Characterization by AFM and AFMIR -- 4.7.2 Transmission Electron Microscopy -- 4.7.3 Electrochemical Characterization -- 4.8 Applications of Various Conducting Polymers in Battery -- 4.8.1 Polyacetylene Battery -- 4.8.2 Polyaniline Batteries -- 4.8.3 Poly (p-phenylene) Batteries -- 4.8.4 Heterocyclic Polymer Batteries -- 4.9 Summary and Outlook -- References -- Chapter 5. Polymer-Based Binary Nanocomposites -- 5.1 Introduction -- 5.2 Binary Composites. , 5.3 Nanostructured CPs -- 5.4 Strategies to Improve Performance -- 5.4.1 Low-dimensional Capacitors -- 5.4.2 Hybrid Capacitors -- 5.4.2.1 Hybrid Electrode Material -- 5.5 CP/Carbon-based Binary Composite -- 5.6 CP/Metal Oxides Binary Composites -- 5.7 CP/Metal Sulfides Binary Complexes -- 5.8 Other Cp-supported Binary Complexes -- 5.9 Conclusion -- References -- Chapter 6. Polyaniline-Based Supercapacitor Applications -- 6.1 Introduction -- 6.2 Polyaniline (PANI) and Its Application Potential -- 6.3 Supercapacitors -- 6.3.1 PANI in Supercapacitors -- 6.3.2 PANI and Carbon Composites -- 6.3.3 PANI/Porous and Carbon Composites -- 6.3.4 PANI/Graphene Composites -- 6.3.5 PANI/CNTs Composites -- 6.3.6 Polyaniline Activation/Carbonization -- 6.3.7 Composites of Polyaniline with Various Conductive Polymer Blends -- 6.3.8 Composites of Polyaniline with Transition Metal Oxides -- 6.3.9 Composites of Polyaniline Core-Shells with Metal Oxides -- 6.3.10 PANI-modified Cathode Materials -- 6.3.11 PANI-modified Anode Materials -- 6.4 Redox-active Electrolytes for PANI Supercapacitors -- 6.5 Examples of Various Polyaniline-based Supercapacitor -- 6.5.1 Composites of Polyaniline Doped with CoCl2 as Materials for Electrodes -- 6.5.2 Composites of Polyaniline Nanofibers with Graphene as materials for electrodes -- 6.5.3 Composites of Polyaniline (PANI) with Graphene Oxide as Electrode Materials -- 6.5.4 Hybrid Films of Manganese Dioxide and Polyaniline as Electrode Materials -- 6.5.5 Composites of Activated Carbon/Polyaniline with Tungsten Trioxide as Electrode Materials -- 6.5.6 PANI- and MOF-based Flexible Solid-state Supercapacitors -- 6.5.7 Polyaniline-based Nickel Electrodes for Electrochemical Supercapacitors -- 6.5.8 Hydrogel of Ultrathin Pure Polyaniline Nanofibers in Supercapacitor Application -- Conclusion -- Acknowledgements -- References. , Chapter 7. Conductive Polymer-derived Materials for Supercapacitor -- 7.1 Introduction -- 7.2 Types of Supercapacitor -- 7.3 Parameters of Supercapacitors -- 7.4 Conducting Polymers (CPs) as Electrode Materials -- 7.4.1 Class of Conducting Polymer as Supercapacitor Electrode -- 7.5 Polyaniline (PANI)-based Electrode -- 7.6 Polypyrrole (PPy)-based Electrode -- 7.7 Polythiophene (PTh)-based Electrode -- 7.8 Conclusions -- Acknowledgement -- References -- Chapter 8. Conducting Polymer-Metal Based Binary Composites for Battery Applications -- 8.1 Conducting polymer (CPs) -- 8.2 Conducting polymers conductivity -- 8.3 Conducting polymer composites -- 8.3.1 Metal center nanoparticles -- 8.3.2 Metal nanoparticles -- 8.4 Conducting Polymer Based Binary Composites -- 8.4.1 Metal Matrix Composites (MMC) -- 8.4.2 Poly (Thiophene) composite -- 8.4.3 Poly (Para-Phenylene Vinylene) composite -- 8.4.4 Poly (Carbazole) composite -- 8.4.5 Vanadium oxide based conducting composite -- 8.4.6 PANI-V2O5 composite -- 8.4.7 Poly(N-sulfo propyl aniline)-V2O5 composite -- 8.5 Conducting polymer composite battery applications -- 8.5.1 Conducting polymer composite for Lithium-ion (Li+) based battery -- 8.5.2 Conducting polymer composites for Sodium-ion (Na+) based Battery -- 8.5.3 Conducting Polymer composite for Mg-Ion (Mg+2) Based Battery -- 8.6 Conducting polymer based composites for electrode materials -- References -- Chapter 9. Novel Conducting Polymer-Based Battery Application -- 9.1 Conducting Polymers (CPs) -- 9.1.1 Poly(Acetylene) -- 9.1.2 Poly(Thiophene) -- 9.1.3 Poly(Aniline) -- 9.1.4 Poly(Pyrrole) -- 9.1.5 Poly(Paraphenylene) and Poly(Phenylene) -- 9.2 Battery Applications of Conducting Polymers -- 9.2.1 Lithium Sulfide batteries -- 9.2.2 Binder for Lithium sulfide battery cathode -- 9.2.3 Sulfur encapsulation for electrode materials. , 9.2.4 Sulfur Encapsulation through Conductive Polymers -- 9.2.5 Conducting polymer anodes for Lithium sulfide battery -- 9.2.6 Conducting polymer as materials interlayer -- 9.3 Li+-ion-based Battery Applications of Conducting Polymers -- 9.4 Na+- ion-based Battery Applications of Conducting Polymers -- 9.5 Mg+2-ion-based Battery Applications of Conducting Polymers -- References -- Chapter 10. Conducting Polymer-Carbon-Based Binary Composites for Battery Applications -- Abbreviations -- 10.1 Introduction -- 10.2 Batteries -- 10.2.1 Types of Batteries -- 10.2.2 Electrode Materials -- 10.3 Conducting Polymer-Carbon-Based Binary Composite in Battery Applications -- 10.3.1 Polyaniline PANI-Carbon-Based Composite -- 10.3.2 Polypyrrole (PPy)-Carbon-Based Composite -- 10.3.3 Poly(3,4-ethylenedioxythiophene) (PEDOT)-Carbon-Based Composite -- 10.3.4 Others Conducting Polymer-Carbon-Based Composite -- 10.4 Conclusions -- Acknowledgements -- References -- Chapter 11. Polyethylenedioxythiophene-Based Battery Applications -- 11.1 Chemistry of PEDOT -- 11.1.1 PEDOT Synthesis and Morphology -- 11.1.1.1 Synthetic Techniques to Achieve Desired Morphologies -- 11.1.2 PEDOT-Based Nanocomposites -- 11.2 PEDOT-Based Polymers in Lithium-Sulfur Batteries -- 11.3 Lithium-Air Battery Based on PEDOT or PEDOT:PSS -- 11.3.1 PEDOT-Based Nanocomposites for Li-O2 Batteries -- 11.3.2 PEDOT:PSS-Based Li-O2 Battery Cathodes -- 11.4 Lithium and Alkali Ion Polythiophene Batteries -- 11.4.1 Cathodes -- 11.4.1.1 Cathode Binders and Composites -- 11.4.2 Anodes -- 11.4.2.1 Anode Binders and Composites -- 11.4.3 All-Polythiophene and Metal-Free Batteries -- References -- Chapter 12. Polythiophene-Based Supercapacitor Applications -- 12.1 Introduction -- 12.2 Properties of Polythiophene (PTh) -- 12.3 Synthesis of Polythiophene -- 12.4 Charge Storage in Polythiophene Electrochemical Capacitors. , 12.5 Polythiophene Electrode Fabrication.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Semiconductors-Optical properties. ; Electronic books.
    Description / Table of Contents: This comprehensive reference describes the classifications, optical properties and applications of semiconductors. Accomplished experts in the field share their knowledge and examine new developments. This is an invaluable resource for engineers, scientists, academics and Industry R&D teams working in applied physics.
    Type of Medium: Online Resource
    Pages: 1 online resource (186 pages)
    Edition: 1st ed.
    ISBN: 9781000598957
    DDC: 537.6/226
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: Semiconductor Optical Fibers -- Chapter 2: Optical Properties of Semiconducting Materials for Solar Photocatalysis -- Chapter 3: Semiconductor Optical Memory Devices -- Chapter 4: Semiconductor Optical Utilization in Agriculture -- Chapter 5: Nonlinear Optical Properties of Semiconductors, Principles, and Applications -- Chapter 6: Semiconductor Photoresistors -- Chapter 7: Semiconductor Photovoltaic -- Chapter 8: Progress and Challenges of Semiconducting Materials for Solar Photocatalysis -- Chapter 9: Linear Optical Properties of Semiconductors: Principles and Applications -- Chapter 10: Computational Techniques on Optical Properties of Metal-Oxide Semiconductors -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...