GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Photocatalysis. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (277 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030126193
    Serie: Environmental Chemistry for a Sustainable World Series ; v.30
    DDC: 541.395
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Role of Nano-photocatalysis in Heavy Metal Detoxification -- 1.1 Introduction -- 1.2 Heavy Metals and Their Toxicological Effects -- 1.2.1 Cadmium -- 1.2.2 Chromium -- 1.2.3 Copper -- 1.2.4 Lead -- 1.2.5 Mercury -- 1.2.6 Nickel -- 1.2.7 Zinc -- 1.3 Overview of Photocatalysis -- 1.4 Mechanism of Photocatalysis -- 1.5 Types of Photocatalysis -- 1.5.1 Homogeneous Photocatalysis -- 1.5.2 Heterogeneous Photocatalysis -- 1.6 Overview and Mechanism of Nano-photocatalysis -- 1.7 Photocatalytic Nanoparticle Synthesis -- 1.7.1 Organic Synthesis -- 1.7.1.1 Plant Extracts Aqueous Solutions -- 1.7.1.2 Microorganisms -- 1.7.2 Chemical Synthesis -- 1.7.2.1 Sol-Gel Method -- 1.7.2.2 Hydrothermal Method -- 1.7.2.3 Polyol Synthesis -- 1.7.2.4 Precipitation Method -- 1.7.3 Physical Synthesis -- 1.7.3.1 Ball Milling -- 1.7.3.2 Melt Mixing -- 1.7.3.3 Physical Vapour Deposition (PVD) -- 1.7.3.4 Laser Ablation -- 1.7.3.5 Sputter Deposition -- 1.8 Mode of Operation on Nano-photocatalysis -- 1.9 Parameters Affecting the Photocatalytic Efficiency -- 1.9.1 Effect of pH of the Reaction Solution -- 1.9.2 Effect of Photocatalyst Concentration -- 1.9.3 Effect of Substrate Adsorption -- 1.9.4 Effect of Dissolved Oxygen -- 1.10 Application -- 1.10.1 Chromium -- 1.10.1.1 pH -- 1.10.1.2 Light Intensity -- 1.10.1.3 Photocatalyst Dosage -- 1.10.1.4 Presence of Organic Compounds -- 1.10.2 Mercury -- 1.10.3 Arsenic -- 1.10.4 Uranium -- 1.11 Disadvantages of Photocatalysis -- 1.12 Photocatalyst Modifications -- 1.12.1 Dye Sensitization -- 1.12.2 Ion Doping -- 1.12.3 Composite Semiconductor -- 1.13 Conclusion -- References -- Chapter 2: Solar Photocatalysis Applications to Antibiotic Degradation in Aquatic Systems -- 2.1 Introduction -- 2.2 Solar Photocatalysis Process. , 2.3 Solar Photocatalysis Treatment for Antibiotic Degradation -- 2.3.1 Trimethoprim -- 2.3.2 Sulfamethoxazole -- 2.3.3 Erythromycin -- 2.3.4 Ciprofloxacin -- 2.4 Conclusions -- References -- Chapter 3: Biomass-Based Photocatalysts for Environmental Applications -- 3.1 Introduction -- 3.2 Background of Biomass-Derived Carbon -- 3.2.1 Biochar -- 3.2.2 Activated Carbon (AC) -- 3.3 Synthesis Methods of Biomass-Derived Carbon -- 3.3.1 Pyrolysis -- 3.3.2 Hydrothermal Carbonization -- 3.3.3 Physical and Chemical Activation -- 3.4 Photocatalysts and Photocatalysis Reactions -- 3.5 Functionalized AC and Applications -- 3.5.1 Types of Functionalized AC -- 3.5.2 Functionalized AC Photocatalysts and Its Application -- 3.6 Future Challenges and Conclusions -- References -- Chapter 4: Application of Bismuth-Based Photocatalysts in Environmental Protection -- 4.1 Introduction -- 4.2 Photocatalytic Oxidation of Pharmaceuticals in Water -- 4.2.1 Tetracycline -- 4.2.2 Ciprofloxacin and Other Antibiotics -- 4.2.3 Carbamazepine -- 4.2.4 Ibuprofen and Diclofenac -- 4.2.5 Other Pharmaceuticals -- 4.3 Photocatalytic Oxidation of Industrial Micropollutants -- 4.3.1 Bisphenol A -- 4.3.2 Oxidation of Other Industrial Pollutants -- 4.4 Oxidation of the Indoor Air Pollutant NOx -- 4.5 Photocatalytic Reduction of Pollutants in Water and Air -- 4.5.1 Reduction of Cr(VI) in Water -- 4.5.2 Reduction of CO2 in Air -- 4.6 Water Splitting -- 4.7 Conclusions -- References -- Chapter 5: Phosphors-Based Photocatalysts for Wastewater Treatment -- 5.1 Introduction -- 5.2 Phosphor Materials: A Historical Background -- 5.3 Inorganic Phosphors in Photocatalysis -- 5.3.1 Types of Inorganic Phosphor Materials -- 5.3.2 Down-Conversion Phosphors in Photocatalysis -- 5.3.3 Up-Conversion Phosphors in Photocatalysis -- 5.3.4 Long-Persistent Phosphors in Photocatalysis. , 5.4 Organic Up-Conversion Phosphors in Photocatalysis -- References -- Chapter 6: Nanocarbons-Supported and Polymers-Supported Titanium Dioxide Nanostructures as Efficient Photocatalysts for Remedi... -- 6.1 Introduction -- 6.1.1 Heterogeneous Semiconductor Photocatalysis -- 6.1.2 Potential TiO2-Based Photocatalysts -- 6.1.3 Limitations of the Fine Powder Form of TiO2-Based Photocatalysts -- 6.1.3.1 Comparison of Synthesis Methods -- 6.1.3.2 Improvements in TiO2 Performance by Structural Change, Doping, and Hybridization -- 6.2 TiO2 Photocatalysts with Polymer-Based Hybrid Photocatalysts for Wastewater Treatment -- 6.2.1 Need for Immobilization of TiO2-Based Photocatalysts -- 6.2.1.1 Features of a Stable Substrate, and Available Substrates -- 6.2.1.2 Comparison of Polymeric Supports for Wastewater Treatment -- 6.3 TiO2 Photocatalysts Supported with Nanocarbons for Wastewater Treatment -- 6.3.1 TiO2-Functionalized Nanocarbon-Based Photocatalysts -- 6.3.1.1 Potential Photocatalytic Improvements with Carbon Nanostructures for Wastewater Treatment -- 6.4 Conclusions and Future Outlook -- References -- Chapter 7: Investigation in Sono-photocatalysis Process Using Doped Catalyst and Ferrite Nanoparticles for Wastewater Treatment -- 7.1 Introduction -- 7.2 Dependency of Catalytic Activity -- 7.2.1 Size-Dependent Catalytic Activity -- 7.2.2 Shape-Dependent Catalytic Effect -- 7.2.3 Interparticle Distance-Dependent Catalytic Effect -- 7.2.4 Support Interaction and Charge Transfer-Dependent Reactivity -- 7.3 Type of Nanoparticles -- 7.3.1 Non-metallic Nanoparticles -- 7.3.2 Metallic Nanoparticles -- 7.3.3 Semiconductor Nanoparticles -- 7.3.4 Ceramic Nanoparticles -- 7.3.5 Polymer Nanoparticles -- 7.3.6 Lipid-Based Nanoparticles -- 7.4 Types of Nanoparticles Based on Structure -- 7.5 Synthesis and Applications -- 7.5.1 Discussions -- 7.6 Synergetic Effect. , 7.7 Conclusion and Overview -- References -- Chapter 8: Magnetic-Based Photocatalyst for Antibacterial Application and Catalytic Performance -- 8.1 Introduction -- 8.2 Magnetic-Based Photocatalysts in Inactivation of the Microorganism -- 8.3 Factors Affecting the Photocatalytic Bacterial Inactivation -- 8.3.1 Effect of Magnetic-Based Photocatalyst Concentration and Light Intensity -- 8.3.2 Nature of Microorganism -- 8.3.3 Solution pH of Magnetic-Based Photocatalyst Suspension -- 8.3.4 Initial Bacterial Concentration -- 8.3.5 Physiological State of Bacteria -- 8.4 Proposed Mechanism for Bacteria Disinfection by the Magnetic-Based Photocatalyst -- 8.5 Using Magnetic-Based Catalyst in Photocatalytic Abatement of Organics -- 8.6 Photocatalysis for the Simultaneous Treatment of Bacteria and Organics -- 8.7 Conclusion and Future Prospects -- References -- Chapter 9: Antimicrobial Activities of Photocatalysts for Water Disinfection -- 9.1 Introduction -- 9.2 Mechanisms of Photocatalytic Disinfection -- 9.3 Pure and Modified Photocatalysts -- 9.4 Photocatalytic Films and Biofilms -- 9.5 Photocatalytic Composites and Nanocomposites -- 9.6 Materials with Antimicrobial Activity in the Absence of Light -- 9.7 Case Study: Application of Supported Photocatalysts in Disinfection of Whey-Processing Water -- 9.8 Final Considerations -- References -- Chapter 10: Medicinal Applications of Photocatalysts -- 10.1 Introduction -- 10.1.1 Background -- 10.2 Antifungal Activity -- 10.3 Virucidal Activity -- 10.4 Antimicrobial Activity -- 10.5 Anticancer Activity -- 10.6 Conclusion -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Renewable energy sources. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (354 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030728779
    Serie: Advances in Science, Technology and Innovation Series
    DDC: 628.532
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- 1 Chemical Valorization of CO2 -- Abstract -- 1 Introduction -- 2 CO2-Derived Fuels and Chemicals -- 2.1 Methane -- 2.2 Methanol -- 2.3 Dimethyl Ether -- 2.4 Formic Acid -- 2.5 Ethanol -- 2.6 CO2-Fischer-Tropsch Liquid Fuels -- 2.7 Carbon Monoxide-Syngas -- 3 CO2 Chemically Derived Materials -- 3.1 Polymers -- 3.2 CO2-Derived Building Materials -- 4 Conclusions -- References -- 2 Progress in Catalysts for CO2 Reforming -- Abstract -- 1 Introduction -- 2 Technologies for Capturing and Storing Carbon Dioxide -- 3 Technologies for Using Carbon Dioxide -- 4 Methane Dry Reforming Process -- 4.1 Progress in Catalysts for Methane Dry Reforming (1928-1989) -- 4.2 Progress in Catalysts for Methane Dry Reforming (1990-1999) -- 4.3 Progress in Catalysts for Methane Dry Reforming (2000-2009) -- 4.4 Progress in Catalysts for Methane Dry Reforming (2010-2019) -- 4.5 Current Status in the Catalysts for Methane Dry Reforming -- 5 Dry Reforming of Other Compounds -- 6 Use of Steam or Oxygen in Dry Reforming of Methane and Other Compounds -- 7 Solid Oxide Fuel Cells Fueled with Biogas -- 8 Commercialization of Dry Reforming Process -- 9 Conclusions -- References -- 3 Fuel Generation from CO2 -- Abstract -- 1 Introduction -- 2 Approaches for Directly Converting CO2 to Fuels -- 2.1 Pure CO2 Decomposition Technology -- 2.2 Reagent-Based CO2 Conversion Technology -- 2.2.1 Dry Deformation of Methane Technology -- 2.2.2 Catalytic Hydrogenation of CO2 -- 3 Biological CO2 Fixation for Fuels -- 3.1 Thermochemical Conversion -- 3.1.1 Torrefaction -- 3.1.2 Pyrolysis -- 3.1.3 Thermochemical Liquefaction -- 3.1.4 Gasification -- 3.1.5 Direct Combustion -- 3.2 Biochemical Conversion -- 3.2.1 Biodiesel -- 3.2.2 Bioethanol -- 3.2.3 Biomethane -- 3.2.4 Biohydrogen -- 3.2.5 Bioelectricity -- 3.2.6 Volatile Organic Compounds. , 4 Conclusion and Future Perspectives -- References -- 4 Thermodynamics of CO2 Conversion -- Abstract -- 1 Introduction -- 2 Carbon Dioxide Capture -- 3 Carbon Dioxide Utilisations -- 4 Thermodynamic Considerations -- 5 Thermodynamics of CO2 -- 5.1 The Thermodynamic Attainable Region (AR) -- 5.2 Using Hess's Law to Transform the Extents to G-H AR @ 25˚C -- 5.3 Increasing Temperature on G-H AR -- 6 Conclusion -- Acknowledgements -- References -- 5 Enzymatic CO2 Conversion -- Abstract -- 1 Introduction -- 1.1 CO2 as a Greenhouse Gas -- 1.2 Carbon Capture, Storage, and Utilization -- 1.3 CO2 as a Chemical Feedstock -- 1.4 CO2 Conversion with Enzymes -- 2 Natural Conversion of CO2 in Cells -- 3 Enzymatic Conversion of CO2 in Cells -- 3.1 Conversion of CO2 by a Single Enzyme (in vitro) -- 3.1.1 Formate Dehydrogenase -- 3.1.2 Carbonic Anhydrase -- 3.1.3 Carbon Monoxide Dehydrogenase -- 3.1.4 Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO) -- 3.2 Conversion of CO2 by a Multi-Enzyme Cascade in vitro -- 3.3 Other Ways (Photocatalytic CO2 Methanation) -- 4 Industrial Applications -- 4.1 Alcohols -- 4.2 Organic Acids -- 4.3 Terpenoids -- 4.4 Fatty Acids -- 4.5 Polyhydroxyalkanoates -- 4.6 Calcium Carbonate -- 5 Summary and Future Prospects -- References -- 6 Electrochemical CO2 Conversion -- Abstract -- 1 Introduction -- 2 Electrochemical CO2 Conversion -- 2.1 Fundamentals of the Process -- 2.2 Variants of Electrochemical Conversion of CO2 -- 2.2.1 Aqueous Electrolytes -- 2.2.2 Non-Aqueous Electrolytes -- 2.2.3 Solid Oxide Electrolytes -- 2.2.4 Molten Salt Electrolytes -- 3 Electrochemical CO2 Conversion from Molten Salts -- 3.1 Present State of Electrochemical Reduction of CO2in Molten Salts for the Production of Solid-Phase Carbonaceous Nanomaterials -- 3.2 Direct Electrochemical Reduction of CO2 in Chloride Melts. , 3.3 Indirect Electrochemical Reduction of CO2 in Molten Salts -- 3.4 The Mechanisms of Electrode Reactions Occurring at the Cathode and Anode -- 3.5 Prospects for CO2 Conversion in Molten Salts -- 4 Conclusions -- References -- 7 Supercritical Carbon Dioxide Mediated Organic Transformations -- Abstract -- 1 Introduction -- 2 Applications of Supercritical Carbon Dioxide -- 2.1 Hydrogenation Reactions -- 2.2 Asymmetric Hydrogenation Reactions -- 2.3 Diels-Alder Reaction -- 2.4 Coupling Reaction -- 2.5 Oxidation Reaction -- 2.6 Baeyer-Villiger Oxidation Reaction -- 2.7 Iodination Reaction -- 2.8 Polymerization Reaction -- 2.9 Carbonylation Reaction -- 2.9.1 Acetalization Reaction -- 2.9.2 Olefin Metathesis Reaction -- 2.9.3 Synthesis of heterocycles -- Synthesis of α-alkylidene Cyclic Carbonates -- Synthesis of 4-Methyleneoxazolidin-2-Ones -- Synthesis of 5-Alkylidene-1, 3-Oxazolidin-2-Ones -- Synthesis of 6-Phenyl-3a, 4-Dihydro-1H-Cyclopenta[C]furan-5(3H)-One -- Synthesis of 3, 4, 5, 6-Tetraethyl-2H-Pyran-2-One -- 3 Conclusions -- Acknowledgements -- References -- 8 Theoretical Approaches to CO2 Transformations -- Abstract -- 1 Carbon Dioxide Properties -- 2 CO2 Transformation as an Undeniable Necessity -- 3 CO2 Activation -- 3.1 Methodologies of CO2 Activation -- 4 Theoretical Insight of CO2 Transformation -- 4.1 The Theoretical Approach in CO2 Conversion to Value-Added Chemicals -- 4.1.1 Carbon Monoxide -- 4.1.2 Methane -- 4.1.3 Methanol -- 4.1.4 Formic Acid -- 4.1.5 Heterocycles -- Cyclic Carbonates -- Cyclic Carbamate -- Quiznazoline-2,4(1H,3H)-Dione -- 4.1.6 Summary and Outlook -- 5 Theoretical Designing of Novel Catalysts Based on DFT Studies -- 5.1 Theoretical Designing: Problems and Opportunities -- 6 Conclusion -- References -- 9 Carbon Dioxide Conversion Methods -- Abstract -- 1 Introduction -- 2 Molecular Structure of CO2. , 3 Thermo-Kinetics of CO2 Conversion -- 4 CO2 Conversion Methods and Products -- 4.1 Fischer-Tropsch Gas-to-Liquid (GTL) -- 4.2 Mineralization -- 4.3 Chemical Looping Dry Reforming -- 4.4 Enzymatic Conversion -- 4.5 Photocatalytic and Photo-Electrochemical Conversion -- 4.6 Thermo-Chemical Conversion -- 4.7 Hydrogenation -- 4.8 Reforming -- 5 Economic Assessment of CO2Alteration to Valuable Products -- 5.1 Syngas -- 5.2 Methanol -- 5.3 Formic Acid -- 5.4 Urea -- 5.5 Dimethyl Carbonate (DMC) -- 6 Conclusions and Future Perspective -- Acknowledgements -- References -- 10 Closing the Carbon Cycle -- Abstract -- 1 Introduction -- 2 Methods to Capture CO2 -- 3 CO2 Capture Technologies -- 4 CO2 Capture from the Air -- 5 Biomass and Waste-Based Chemicals -- 6 Advantages of Biomass-Based Chemicals -- 7 Replacement of Carbon-Based Energy Resources -- 8 Biomass Energy -- 9 Wind Energy -- 10 Solar Energy -- 11 Ocean Energy -- 12 Geothermal Energy -- 13 Hydrothermal Energy -- 14 Conclusions -- References -- 11 Carbon Dioxide Utilization to Energy and Fuel: Hydrothermal CO2 Conversion -- Abstract -- 1 Introduction -- 2 Hydrothermal CO2 Conversion -- 2.1 Metals and Catalysts as Reductant -- 2.2 Organic Wastes as Reductant -- 2.3 Inorganic Wastes as Reductant -- 2.4 Biomass as Reductant -- 3 Conclusion -- References -- 12 Ethylenediamine-Carbonic Anhydrase Complex for CO2 Sequestration -- 1 Introduction -- 2 An Overview of Carbonic Anhydrase (CA) -- 3 Mechanism of Action for Biocarbonate Formation -- 4 Historical Background of Carbonic Anhydrase -- 5 Sources of Carbonic Anhydrase -- 6 Carbonic Anhydrase in Microorganism -- 6.1 Micrococcus Lylae, Micrococcus Luteus, and Pseudomonas Fragi -- 6.2 Bacillus Subtilis and Citrobacter Freundii -- 6.3 Neisseria Gonorrhoeae -- 6.4 Helicobacter Pylori -- 7 Plant Carbonic Anhydrase -- 8 Overview of CO2. , 9 Sources of Carbon Dioxide (CO2) -- 10 Effect of Carbon Dioxide (CO2) -- 11 Carbon Dioxide Capturing -- 12 Carbon Dioxide (CO2) Sequestration -- 13 Carbon Dioxide (CO2) Sequestration by Carbonic Anhydrase -- 14 Separation System for CO2 Sequestration -- 15 Cryogenic Separation -- 16 Membrane Separation -- 17 Absorption -- 18 Adsorption -- 19 Bioreactors for CO2 Sequestration -- 20 Carbonic Anhydrase Immobilization -- 21 Ethylenediamine for Carbon Dioxide (CO2) Capturing -- 22 CO2 Capturing and Sequestration with Ethylenediamine-Carbonic Anhydrase Complex -- 23 CO2 Capturing and Sequestration Design and Optimization: Challenges and Future Prospects -- 24 Conclusion -- References -- 13 Green Pathway of CO2 Capture -- Abstract -- 1 Introduction -- 2 Molecular Structure of Carbon Dioxide -- 3 CO2 Capture System -- 3.1 Post-Combustion System -- 3.2 Pre-Combustion System -- 3.3 Oxy-Fuel Combustion System -- 4 Absorption Technology -- 4.1 Green Absorption with Ionic Liquids -- 4.1.1 Properties and Uses of Ionic Liquids -- 4.1.2 CO2 Solubility in PILs -- 4.1.3 CO2 Absorption in PILs with Carboxylate Anion -- 4.2 Reaction Mechanism Involved in CO2-Absorption -- 5 Adsorption Technology -- 5.1 Organic Adsorbents -- 5.1.1 Activated Charcoal -- 5.1.2 Biochar -- 5.1.3 Metal-Organic Frameworks (MOFs) -- 5.2 Other CO2 Adsorbents -- 5.2.1 Metal Oxide-Based Absorbents -- 5.2.2 Zeolites -- 5.3 Biological Processes of CO2Sequestration -- 5.3.1 Carbon Utilization by Forest and Agricultural Management -- 5.3.2 Ocean Fertilization -- 5.3.3 CO2 Capture by Microalgae -- 5.4 Electrochemical Ways for CO2 Capture -- 6 Conclusion -- References -- 14 Carbon Derivatives from CO2 -- Abstract -- 1 Introduction -- 2 Artificial Photoreduction -- 3 Electrochemical Reduction -- 4 Hydrogenation -- 5 Synthesis of Organic Carbonates -- 6 Reforming. , 7 Photocatalytic Reduction of CO2 with Water.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Green chemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (299 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030678845
    Serie: Advances in Science, Technology and Innovation Series
    DDC: 660.0286
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- 1 Biomass-Derived Polyurethanes for Sustainable Future -- Abstract -- 1 Introduction -- 1.1 Chemicals for Preparation of Polyurethanes -- 1.2 Importance of Green Chemicals and Synthesis Methods -- 1.3 Characteristics of Biomaterials for Polyurethanes -- 2 Bio-Oils as a Renewable Resource for Polyurethanes -- 2.1 Epoxidation and Ring-Opening Reactions -- 2.2 Hydroformation and Hydrogenation Reactions -- 2.3 Ozonolysis -- 2.4 Thiol-Ene Reaction -- 2.5 Transesterification Reaction -- 3 Terpenes as Green Starting Chemicals for Polyurethanes -- 4 Lignin for Green Polymers -- 5 Conclusion -- References -- 2 Mechanochemistry: A Power Tool for Green Synthesis -- Abstract -- 1 Introduction -- 2 History of Mechanochemistry -- 3 Principles of Mechanochemistry -- 3.1 Mechanisms and Kinetics of Mechanochemistry -- 3.2 Effects of Reaction Parameters -- 4 Mechanochemical Synthesis of Materials -- 4.1 Mechanochemical Synthesis of Co-crystals -- 4.2 Mechanochemistry in Inorganic Synthesis -- 4.3 Mechanochemistry in Organic Synthesis -- 4.4 Mechanochemistry in Metal-Organic Frameworks (MOFs) -- 4.5 Mechanochemistry in Porous Organic Materials (POMs) -- 4.6 Mechanochemical Synthesis of Polymers -- 5 Conclusions -- References -- 3 Future Trends in Green Synthesis -- Abstract -- 1 Introduction -- 2 Green Chemistry Metrics -- 2.1 Atom Economy (AE) -- 2.2 Environmental Factor (E Factor) -- 2.3 Process Mass Intensity (PMI) -- 2.4 Reaction Mass Efficiency (RME) -- 3 Application of Green Concept in Synthesis -- 3.1 Solvent-Based Organic Synthesis -- 3.2 Aqueous Medium -- 3.2.1 Micellar Media -- 3.2.2 Different Non-Aqueous Media -- Ionic Liquids -- Fluorous Media -- Supercritical Fluid -- Solvent-Free Synthesis -- 4 Future Trends -- References -- 4 Plant-Mediated Green Synthesis of Nanoparticles -- Abstract -- 1 Introduction. , 2 Methods for Metallic Nanoparticle Biosynthesis -- 3 Green Biosynthesis of Metallic NPs -- 3.1 Gold Nanoparticles -- 3.2 Platinum Nanoparticles -- 3.3 Silver Nanoparticles -- 3.4 Zinc Oxide Nanoparticles -- 3.5 Titanium Dioxide Nanoparticles -- 4 Different Parts Used for the Synthesis of Metallic Nanoparticles -- 4.1 Fruit -- 4.2 Stem -- 4.3 Seeds -- 4.4 Flowers -- 4.5 Leaves -- 5 Conclusions -- References -- 5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- Abstract -- 1 Introduction -- 2 Advantages of Green Synthesis Methods -- 3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 3.1 Biological Methods -- 3.1.1 Using Microorganism -- Microorganisms as Reactant -- Microorganism as Template -- 3.1.2 Using Plant -- Plant as Reactant -- Plant as Template -- 3.1.3 Using Other Green Templates -- 3.2 Physical and Chemical Methods -- 3.2.1 Green Techniques -- 3.2.2 Green Reagents -- 3.2.3 Green Solvents -- 4 Growth Mechanism of Metal and Metal Oxide HSNs -- 4.1 Biological Method -- 4.1.1 Biomolecules as Reagents -- 4.1.2 Biomolecules as Templates -- 4.2 Physical and Chemical Methods -- 5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 5.1 Biomedical Application -- 5.2 Environmental Remediation -- 5.2.1 Wastewater Treatment -- 5.2.2 Energy Storage -- 5.2.3 Sensing -- 6 Present Challenges and Future Prospect -- Acknowledgements -- References -- 6 Bioprivileged Molecules -- Abstract -- 1 Introduction -- 2 Four Carbon 1,4-Diacids -- 2.1 Succinic Acid -- 2.2 Fumaric Acid -- 2.3 Malic Acid -- 3 Furan 2,5-Dicarboxylic Acid (FDCA) -- 4 3-Hydroxypropionic Acid (3-HPA) -- 5 Glucaric Acid -- 6 Glycerol -- 7 Aspartic Acid -- 8 Itaconic Acid -- 9 3-Hydroxybutyrolactone -- 10 Sorbitol -- 11 Xylitol -- 12 Glutamic Acid -- 13 Levulinic Acid. , 14 Emerging Molecules -- 15 Conclusion -- References -- 7 Membrane Reactors for Green Synthesis -- Abstract -- 1 Introduction -- 2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL -- 2.1 Ionic Liquid Media Effect on Free CLAB -- 2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL -- 2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL -- 3 Mixed Ionic Electronic MR -- 3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane -- 3.2 Steam Flow Effect on Side I of Membrane -- 3.3 Temperature Effect -- 4 Green Synthesis of Methanol in a Membrane Reactor -- 5 Green Fuel Energy -- 5.1 Green H2 Energy -- 5.2 Biofuel Energy -- 5.3 Green Fuel Additive -- 6 Biocatalyst Membrane Reactors -- 7 Photocatalytic Membrane Reactors -- 8 Conclusions -- References -- 8 Application of Membrane in Reaction Engineering for Green Synthesis -- Abstract -- 1 Introduction -- 2 Applications of Membrane Reactors in Reaction Engineering -- 2.1 Syngas Production -- 2.2 Hydrogen Production -- 2.3 CO2 Thermal Decomposition -- 2.4 Higher Hydrocarbon Production -- 2.5 Methane Production -- 2.6 Ammonia Production -- 3 Environmental Impacts -- 4 Conclusions and Future Recommendations -- Acknowledgements -- References -- 9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes -- Abstract -- 1 Introduction -- 2 Principle -- 3 Enzymes Involved in Light-Driven Catalysis -- 3.1 Heme-Containing Enzymes -- 3.1.1 Cytochrome P450 -- 3.1.2 Peroxidases -- 3.2 Flavin-Based Enzyme -- 3.2.1 Baeyer-Villiger Monooxygenases -- 3.2.2 Old Yellow Enzymes -- 3.3 Metal Cluster-Centered Enzyme -- 3.3.1 Hydrogenases -- 3.3.2 Carbon Monoxide Dehydrogenases -- 4 Nanoparticle-Based Activation of Enzyme -- 5 Applications in Photo-Biocatalysis -- 5.1 Isolated Enzymes/Cell Lysates -- 6 Summary and Future Scope -- References. , 10 Biomass-Derived Carbons and Their Energy Applications -- Abstract -- 1 Introduction -- 2 Types of Biomass Materials -- 2.1 Plant-Based Carbons -- 2.2 Fruit-Based Carbons -- 2.3 Animal-Based Carbons -- 2.4 Microorganism-Based Carbons -- 3 Activation of Biomass-Derived Carbons -- 3.1 Activation of Carbons -- 3.1.1 Chemical Activation of Carbons -- 3.1.2 Carbon Activation Through Physical Method -- 3.1.3 Self-activation of Carbons -- 3.2 Pyrolysis Techniques -- 3.2.1 Effect of Temperature -- 3.2.2 Effect of Residence Time -- 3.2.3 Heating Rate Effect -- 3.2.4 Size of the Particle -- 3.3 Microwave-Assisted Technique -- 3.4 Carbonization by Hydrothermal -- 3.5 Ionothermal Carbonization -- 3.6 Template Method -- 4 Energy Storage Applications of Biomass Carbons -- 4.1 Supercapacitors -- 4.2 Li/Na-Ion Batteries -- 5 Conclusion -- Acknowledgements -- References -- 11 Green Synthesis of Nanomaterials via Electrochemical Method -- Abstract -- 1 Introduction -- 2 Green Synthesis -- 2.1 Application of Biology in Green Synthesis -- 2.2 Green Synthesis Based on the Application of Solvent -- 3 Computational Data and Analysis -- 4 Electrochemical Method -- 5 Electrodeposition Method -- 5.1 Experimental Setup for Electrodeposition -- 6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis -- 7 Conclusion -- References -- 12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments -- Abstract -- 1 Introduction -- 2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs]. -- 2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations -- 2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions. , 2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations -- 2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines -- 2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles -- 2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines -- 2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR) -- 2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions -- 2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O -- 2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines -- 2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines -- 2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs -- 3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs] -- 3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway -- 3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway -- 3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy -- 3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations -- 3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions -- 3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides. , 3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Ion exchange. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (230 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030104306
    DDC: 541.3723
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- 1 Green Approach: Microbes for Removal of Dyes and Metals via Ion Binding -- Abstract -- 1.1 Introduction -- 1.2 Pollutants in the Environment -- 1.2.1 Toxic Metals -- 1.2.2 Triphenylmethane Dyes -- 1.3 Bioremediation Approaches in Removing Pollutants -- 1.3.1 Non-microbial Strategies -- 1.3.2 Microbial-Based Strategies -- 1.4 Mechanisms for Removal of Pollutant Ions -- 1.4.1 Mechanisms for Removal of Metal Ions -- 1.4.2 Mechanisms for Removal of Dyes -- 1.5 Innovations in the Removal of Pollutant Ions -- 1.6 Conclusions and Future Prospects -- Acknowledgements -- References -- 2 Removal of Heavy Metal from Wastewater Using Ion Exchange Membranes -- Abstract -- 2.1 Introduction -- 2.2 Heavy Metal -- 2.2.1 Chromium -- 2.2.2 Nickel -- 2.2.3 Copper -- 2.2.4 Zinc -- 2.2.5 Cadmium -- 2.2.6 Mercury -- 2.2.7 Lead -- 2.3 Physical Treatment Methods -- 2.3.1 Ultrafiltration -- 2.3.2 Nanofiltration -- 2.3.3 Reverse Osmosis -- 2.3.4 Forward Osmosis -- 2.3.5 Adsorption -- 2.4 Chemical Treatment Methods -- 2.4.1 Electrodialysis Method -- 2.4.2 Fuel Cell Method -- 2.5 Remaining Challenges and Perspectives -- 2.6 Conclusion -- Acknowledgements -- References -- 3 Separation and Purification of Uncharged Molecules -- Abstract -- 3.1 Introduction -- 3.2 Separation and Purification of Vitamin B12 -- 3.2.1 Downstream Processing of Vitamin B12 for Measurement -- 3.3 Separation and Purification of Haemoglobin -- 3.4 Separation and Purification of Uncharged Dyes -- 3.4.1 Purification and Separation of Dyes -- 3.5 Conclusion -- References -- 4 Aluminosilicate Inorganic Polymers (Geopolymers): Emerging Ion Exchangers for Removal of Metal Ions -- Abstract -- 4.1 Introduction -- 4.2 Methodology and Calculations -- 4.2.1 Terminology: Ion Exchange or Adsorption -- 4.2.2 Evidence for Ion Exchange. , 4.2.3 Modeling of Adsorption of Metal Ions on Geopolymers -- 4.2.4 Geopolymer Preparation -- 4.2.5 Washing of the Geopolymeric Adsorbent -- 4.2.6 Comparison Between Geopolymers and Zeolites -- 4.2.7 Geopolymers as Ion Exchangers -- 4.2.7.1 Geopolymers as Ion Exchangers for Alkali Metal Ions -- 4.2.7.2 Geopolymers as Ion Exchangers for Ammonium Ion -- 4.2.7.3 Geopolymers as Ion Exchangers for Alkaline Earth Metals -- 4.2.7.4 Geopolymers as Ion Exchangers for Heavy Metals -- Metakaolin-Based Geopolymers -- Fly Ash-Based Geopolymers -- Zeolite-Based Geopolymers -- 4.2.7.5 Geopolymers as Ion Exchangers/Adsorbents for Cationic Organic Dyes -- 4.2.8 Comparison of Geopolymers with Zeolites -- 4.2.8.1 Synthesis Conditions -- 4.2.8.2 Crystallinity -- 4.2.8.3 Surface Area and Porosity -- 4.2.8.4 Cation Exchange Capacity -- 4.2.8.5 Selectivity for Metal Ions -- 4.2.8.6 Stability in Acidic Solutions -- 4.2.8.7 Thermal Stability -- 4.2.8.8 Mechanical Strength -- 4.2.8.9 Regeneration -- 4.2.9 Stabilization/Solidification/Encapsulation of Ion Exchangers in Geopolymers -- 4.3 Concluding Remarks -- References -- 5 Microwave-Assisted Hydrothermal Synthesis of Agglomerated Spherical Zirconium Phosphate for Removal of Cs+ and Sr2+ Ions from Aqueous System -- Abstract -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Preparation of Agglomerated Spherical Zirconium Phosphate -- 5.2.2 Characterization -- 5.2.3 Ion Exchange Properties -- 5.2.4 Elution Behaviour -- 5.2.5 Distribution Studies -- 5.3 Results and Discussion -- 5.3.1 Fourier-Transform Infrared (FT-IR) Characterization -- 5.3.2 Powder X-ray Diffraction Studies -- 5.3.3 Scanning Electron Microscopy (SEM) and Energy Dispersive (EDS) Characterization -- 5.3.4 Zeta and Surface Area Analysis -- 5.3.5 Ion Exchange Characteristics -- 5.3.6 Mechanism of Sr2+ Interaction with Zirconium Phosphate -- 5.4 Conclusion. , Acknowledgements -- References -- 6 Metal Hexacyanoferrates: Ion Insertion (or Exchange) Capabilities -- Abstract -- 6.1 Introduction -- 6.2 Ion Exchange -- 6.2.1 Ion Exchange in MHCF at Work: Potentiometric Ion Sensors -- 6.2.2 An Ion Exchange-Based Approach for the Recovery of Metal Ions: The Case of Cesium and Thallium -- 6.2.3 Electrochemically Driven Ion Exchange -- 6.2.4 Reversible Ion Insertion in Battery Systems -- 6.3 Conclusion -- References -- 7 Biosorbents and Composite Cation Exchanger for the Treatment of Heavy Metals -- Abstract -- 7.1 Introduction -- 7.2 Agro-Based Biosorbents for Heavy Metal Removal -- 7.3 Biopolymers -- 7.3.1 Functional Groups -- 7.3.2 Cellulose -- 7.3.3 Chitosan -- 7.3.4 Nanofiber Membranes and Packed-Bed Adsorbers -- 7.4 Composite Ion Exchangers -- 7.5 Conclusion and Future Outlook -- References -- 8 Rare Earth Elements-Separation Methods Yesterday and Today -- Abstract -- 8.1 Introduction -- 8.2 Rare Earth Elements -- 8.2.1 General Characteristics -- 8.2.2 The Occurrence of Rare Earth Elements -- 8.2.3 Physicochemical Properties of Rare Earth Elements -- 8.2.4 Application of Rare Earth Metals -- 8.2.5 Production and Consumption of Rare Earth Elements in the World -- 8.3 Rare Earth Element Recovery from Nickel-Metal Hydride Batteries -- 8.4 Rare Earth Element Recovery from Permanent Magnets -- 8.5 Separation of High-Purity Rare Earth Elements -- 8.5.1 Separations of Rare Earth Elements of High Purity Using Cation Exchangers -- 8.5.2 Separations of Rare Earth Elements of High Purity Using Anion Exchangers -- 8.5.3 Separations of Rare Earth Elements of High Purity Using Chelating Ion Exchangers -- 8.6 Current Technologies -- 8.7 Conclusions -- References -- 9 Sequestration of Heavy Metals from Industrial Wastewater Using Composite Ion Exchangers -- Abstract -- 9.1 Introduction -- 9.2 Ion-Exchange Materials. , 9.2.1 Organic Materials -- 9.2.2 Inorganic Materials -- 9.2.3 Composite Materials -- 9.2.3.1 Hybrid Materials -- 9.2.3.2 Nanocomposite -- 9.3 Mechanism of Ion-Exchange Process -- 9.4 Conclusion -- Acknowledgements -- References -- 10 Applications of Organic Ion Exchange Resins in Water Treatment -- Abstract -- 10.1 Introduction -- 10.2 Removal of Heavy Metals -- 10.3 Removal of Organics -- 10.3.1 Natural Organic Matter (NOM) -- 10.3.2 Disinfection by-Products (DBPs) -- 10.3.3 Surfactants -- 10.3.4 Pharmaceuticals -- 10.3.5 Dyes -- 10.3.6 Small Organic Matter -- 10.4 Desalination -- 10.5 Boron Removal -- 10.6 Removal of Anions -- 10.7 Removal of Cations -- 10.7.1 Hardness -- 10.7.2 Ammonium -- 10.8 Conclusions -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Ion exchange chromatography. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (232 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030060824
    DDC: 543.0893
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- 1 Separation and Purification of Amino Acids -- 1.1 Introduction -- 1.2 Ion Exchange Chromatography in the Separation of Amino Acids -- 1.3 Ion Exchange Chromatography of Amino Acids -- 1.4 Ion Exchange Resins -- 1.5 Buffer Systems in IEC for Separation of Amino Acids -- 1.5.1 Sodium Citrate Buffer System -- 1.5.2 Lithium Citrate Buffer System -- 1.6 The Relation Between the Concentration of Eluent and Retention Time of Amino Acids -- 1.7 Effect of Temperature on Separation of Amino Acids -- 1.8 Effect of pH on Separation of Amino Acids -- 1.9 Effect of the Flow Rate of the Eluting Buffer on the IEC of Amino Acids -- 1.10 Regeneration of the Ion Exchange Column -- 1.11 Conclusion -- References -- 2 Ion Exchange Chromatography for Enzyme Immobilization -- 2.1 Introduction -- 2.2 Enzyme Immobilization -- 2.2.1 Immobilization Approaches -- 2.3 Ion-Exchange as an Immobilization Tool -- 2.4 Enzyme Immobilization Research and Application by Ion-Exchange in the Laboratory and Industry -- 2.5 Conclusion and Future Prospects -- References -- 3 Determination of Morphine in Urine -- 3.1 Introduction -- 3.1.1 Structural Features of Morphine -- 3.1.2 Physical Properties -- 3.1.3 Various Routes of Morphine Administration -- 3.1.4 Stay Period of Morphine in the Body -- 3.2 What Is Drug Abuse? -- 3.2.1 Fatal Dose of Morphine -- 3.2.2 Statistics Towards Morphine Addiction -- 3.2.3 Adverse Effect of Morphine -- 3.3 Samples Used for Detection of Morphine -- 3.3.1 Sample Collection/Preparation Prior to Detection -- 3.3.2 Extraction and Derivatization -- 3.4 Detection of Morphine in Urine -- 3.4.1 Chromatographic Methods -- 3.4.2 Liquid Chromatography (LC) and High-Performance Liquid Chromatography (HPLC) -- 3.4.3 Thin-Layer Chromatography (TLC) -- 3.4.4 Capillary Electrophoresis (CE) -- 3.4.5 Electrochemical Detection. , 3.4.6 Combination of Molecularly Imprinted Polymer with Chromatography -- 3.4.7 Some Miscellaneous Detection Techniques -- 3.5 Conclusion and Future Scope -- References -- 4 Chromatographic Separation of Amino Acids -- 4.1 Introduction -- 4.1.1 History -- 4.1.2 Classification of Amino Acids -- 4.2 Separation -- 4.2.1 What is Separation? -- 4.2.2 Why Need to Do Separation of Amino Acids? -- 4.2.3 What is Chromatography? -- 4.2.4 Classification of Chromatographic Methods -- 4.2.5 Advantages of Chromatographic Methods Over Other Methods -- 4.3 Separation of Amino Acids by Gas Chromatography (GC) -- 4.4 Liquid Chromatography (LC) -- 4.4.1 Separation of Amino Acids by High-Performance Liquid Chromatography (HPLC) -- 4.4.2 Advantages of Liquid Chromatography Over the Gas Chromatography -- 4.5 Amino Acid Separation by Countercurrent Chromatography (CCC) -- 4.6 Separation of Amino Acids by Thin-Layer Chromatography (TLC) -- 4.6.1 Preparation of Thin Plates -- 4.6.2 Sample Spotting on the Thin-Layer Plate -- 4.6.3 Detection of Amino Acids on the Thin-Layer Plate -- 4.7 Separation of Amino Acids by Capillary Electrophoresis (CE) -- 4.7.1 Various Modes for Capillary Electrophoresis (CE) -- 4.8 Separation of Amino Acids by the Hyphenated Technique -- 4.8.1 List of Hyphenated Techniques -- 4.8.2 Separation of Amino Acids Using GC-MS -- 4.8.3 Separation of Amino Acids by LC-MS -- 4.8.4 Separation of Amino Acids by LC-MS-MS -- 4.8.5 Separation of Amino Acids by CE-MS -- 4.9 Conclusion and Future Scope -- References -- 5 Applications of Ion-Exchange Chromatography in Pharmaceutical Analysis -- 5.1 Introduction -- 5.2 Application of Ion-Exchange Chromatography in Quantitative Analysis -- 5.2.1 Single-Mode Ion-Exchange Chromatography -- 5.2.2 Analysis of Small Molecules (Organic and Inorganic Ions) -- 5.2.3 Mixed-Mode Chromatography. , 5.3 Pretreatment and Separation Prior to Analysis -- 5.3.1 Ionic Solid-Phase Extraction -- 5.3.2 Mixed-Mode Ion-Exchange Solid-Phase Extraction -- 5.3.3 Flow Injection Ion-Exchange Preconcentration -- 5.4 Summary -- References -- 6 Thermodynamic Kinetics and Sorption of Bovine Serum Albumin with Different Clay Materials -- 6.1 Introduction -- 6.2 Experimental -- 6.3 Results and Discussion -- 6.3.1 The Effect of Some Specific Physicochemical Properties BSA onto Adsorption -- 6.3.2 Analyses of FTIR, TGA, and SEM Images -- 6.3.3 Kinetic Analysis -- 6.3.4 Thermodynamic Parameters -- 6.4 Conclusions -- References -- 7 Sorbitol Demineralization by Ion Exchange -- 7.1 Introduction -- 7.2 Industrial Application of Sorbitol -- 7.3 Importance of Demineralization/Deashing of Sorbitol -- 7.4 Role of Ion-Exchange Chromatography -- 7.5 Different Types of Ion Exchangers for Sorbitol Demineralization -- 7.5.1 Cation-Exchange Chromatography -- 7.5.2 Anion-Exchange Chromatography -- 7.6 Conclusion -- References -- 8 Separation and Purification of Nucleotides, Nucleosides, Purine and Pyrimidine Bases by Ion Exchange -- 8.1 Introduction -- 8.2 Ion-Exchange Chromatography -- 8.2.1 Mechanism of Ion Exchange -- 8.2.2 Components of Ion-Exchange Chromatography -- 8.3 Nucleotides -- 8.4 Nucleosides -- 8.5 Purines and Pyrimidines -- 8.6 Column Preparation and Operation -- 8.7 Operation -- 8.8 Impact of Separation Parameters -- 8.9 Separation of Nucleotides -- 8.9.1 Fractionation of Nucleotides -- 8.9.2 Cation-Exchange Resin -- 8.9.3 Anion-Exchange Materials -- 8.10 Separation of Nucleosides -- 8.10.1 Purification of Nucleosides -- 8.10.2 Cation-Exchange Chromatography -- 8.10.3 Anion-Exchange Chromatography -- 8.11 Separation of Purines and Pyrimidines -- 8.11.1 Cation-Exchange Chromatography -- 8.11.2 Anion-Exchange Chromatography. , 8.12 Applications of Ion-Exchange Chromatography -- 8.13 Conclusion -- References -- 9 Separation and Purification of Vitamins: Vitamins B1, B2, B6, C and K1 -- 9.1 Introduction -- 9.2 Significance of Vitamins -- 9.3 Classification of Vitamins -- 9.3.1 Water-Soluble Vitamins -- 9.3.2 Fat-Soluble Vitamins -- 9.4 Sources of Vitamins -- 9.4.1 B Vitamins -- 9.4.2 Vitamin C -- 9.4.3 Vitamin K -- 9.5 Vitamin Deficiency Disorders -- 9.6 B Vitamins -- 9.6.1 Vitamin B1 -- 9.6.2 Vitamin B2 -- 9.6.3 Vitamin B6 -- 9.7 Vitamin C -- 9.8 Vitamin K1 -- 9.9 Separation and Purification of Vitamin -- 9.10 Ion-Exchange Chromatography -- 9.11 Mechanism of Ion-Exchange Chromatography -- 9.12 Separation and Purification of Vitamins B1, B2 and B6 -- 9.13 Separation and Purification of Vitamin C -- 9.14 Ion-Exchange Separation and Purification of Vitamin K1 -- 9.15 Conclusion -- References -- 10 Colour Removal from Sugar Syrups -- 10.1 Colourants in Sugar Solutions -- 10.1.1 Determination of Colour in Sugar and Sugar Juices -- 10.1.2 Colour Substances in Sugar and Sugar Solutions -- 10.1.3 Formation of Beet and Cane Colourants During the Technological Process -- 10.1.4 Removal of Colourants from Beet and Cane Sugar and Sugar Solution -- 10.2 Decolourisation with Ion-Exchange Resins -- 10.2.1 The Terminology Used in Ion-Exchange Technology -- 10.2.2 Types of Ion-Exchange Resins -- 10.2.3 Set-up of Industrial Chromatographic Systems for Colour Removal -- 10.2.4 Comparison of Ion-Exchange Technology with Other Decolourising Techniques -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Carbon dioxide. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (216 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030286224
    Serie: Environmental Chemistry for a Sustainable World Series ; v.40
    DDC: 546.68119999999999
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Conversion of Carbon Dioxide into Liquid Hydrocarbons Using Cobalt-Bearing Catalysts -- 1.1 Introduction -- 1.2 Hydrogenation of CO2 into Hydrocarbons over a Cobalt Catalyst in a Fischer-Tropsch Process -- 1.2.1 Fischer-Tropsch Reactions -- 1.2.2 Bimetallic Cobalt and Iron Catalysts -- 1.2.3 Promoters on Cobalt-Based Catalysts for CO2 Hydrogenation -- 1.2.4 Effect of the Supports and Structure of Cobalt-Based Catalysts -- 1.2.5 Pretreatment of Cobalt Catalysts -- 1.2.6 Effect of Pressure and Ratio of the Feed Gas -- 1.3 Hydrogenation of CO2 over a Cobalt Catalyst in a Solution -- 1.4 CO2 Reforming of CH4 over a Cobalt Catalyst -- 1.5 Electrochemical Reduction of CO2 over a Cobalt Catalyst -- 1.5.1 Electrochemical Reduction of CO2 -- 1.5.2 Cobalt-Based Electrocatalysts for Reduction of CO2 into Formate -- 1.5.3 Cobalt Phthalocyanines and Cobalt Porphyrins for CO2 Reduction -- 1.6 Photocatalytic Reduction of CO2 over a Cobalt Catalyst -- 1.7 Conclusions -- References -- Chapter 2: Conversion of Carbon Dioxide Using Lead/Composite/Oxide Electrode into Formate/Formic Acid -- 2.1 Introduction -- 2.2 Electrode Composition -- 2.2.1 Lead Metal -- 2.2.2 Lead-Based Composites -- 2.2.3 Lead Oxides -- 2.3 Catalytic Mechanism -- 2.4 Reactor and Electrode Type -- 2.4.1 Traditional Electrode -- 2.4.2 Gas Diffusion Electrodes -- 2.4.3 Other Types -- 2.5 Effects of Operation Conditions -- 2.6 Conclusions -- References -- Chapter 3: Thermochemical Conversion of Carbon Dioxide to Carbon Monoxide by Reverse Water-Gas Shift Reaction over the Ceria-B... -- 3.1 Introduction -- 3.2 Reverse Water-Gas Shift Thermodynamic Considerations -- 3.3 Reverse Water-Gas Shift Catalyst -- 3.3.1 Supported Metal Catalysts -- 3.3.2 Reverse Water-Gas Shift Promoters. , 3.4 Chemistry of Cerium During Reduction and Reverse Water-Gas Shift -- 3.4.1 CeO2 Reduction Thermodynamics -- 3.4.2 In Situ CeO2 Reduction -- 3.4.3 CeO2 Reduction Mechanism -- 3.5 Conclusion -- References -- Chapter 4: Photocatalytic Systems for Carbon Dioxide Conversion to Hydrocarbons -- 4.1 Introduction -- 4.2 Fundamental Aspects for CO2 Photoconversion -- 4.2.1 Background and General Principles -- 4.2.2 Challenges of CO2 Photoconversion -- 4.3 Carbon Dioxide Photoreduction over UV-Light Semiconductors -- 4.3.1 Titanium Dioxide (TiO2) Material -- 4.3.2 TiO2-Based Photocatalyst -- Transition and Noble Elements -- Rare Earth Elements -- 4.4 Carbon Dioxide Photoreduction on Visible Light Materials -- 4.4.1 Metal Oxide Photocatalyst -- 4.4.2 Porous Materials -- 4.4.3 Carbon-Based Materials -- Graphene and Graphene Oxide -- Graphitic Carbon Nitride (g-C3N4) -- References -- Chapter 5: Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal-Organic Frameworks and Non-metal-Organic Framew... -- 5.1 Introduction -- 5.2 Challenges Involved in Methanol Production from Carbon Dioxide Electrocatalytic Reduction -- 5.3 Homogeneous and Heterogeneous Electrocatalysts for Electroreduction of Carbon Dioxide -- 5.3.1 Homogeneous Catalysts for Electroreduction of Carbon Dioxide -- 5.3.2 Heterogeneous Catalysis for Electroreduction of Carbon Dioxide -- 5.4 Kinetics of Electroreduction of Carbon Dioxide into Methanol -- 5.5 Formation of Carbon Dioxide Anion Radical -- 5.6 Formation of Methanoate from the Electroreduction of Carbon Dioxide -- 5.7 Formation of Carbon Monoxide from Electroreduction of Carbon Dioxide -- 5.8 Formation of Methanol from Electroreduction of Carbon Dioxide -- 5.9 Hydrogen Evolution Reaction -- 5.10 Benchmark Non-metal-Organic Framework-Based Catalysts for Carbon Dioxide Reduction. , 5.11 Metal-Organic Frameworks as Catalysts for the Carbon Dioxide Reduction Reaction -- 5.12 Conclusion and Recommendations -- References -- Chapter 6: Photocatalytic Conversion of Carbon Dioxide into Hydrocarbons -- 6.1 Introduction -- 6.2 General Principles of Artificial Photocatalysis -- 6.2.1 Thermodynamic Theory of Carbon Dioxide Photoreduction -- 6.2.2 General Criterion of Carbon Dioxide Photoconversion Systems -- Product Formation Rate -- Selectivity Percentage -- Amount of Carbon Dioxide Converted -- Apparent Quantum Efficiency -- Turnover Number -- 6.3 Photocatalytic Material for Carbon Dioxide Photoreduction -- 6.3.1 Metal Oxide Photocatalyst for Carbon Dioxide Reduction -- 6.3.2 Layered Double Hydroxide -- 6.3.3 Metal Chalcogenides -- 6.3.4 Carbon-Based Two-Dimensional Layered Material -- 6.4 Surface Modification of Photocatalyst for Carbon Dioxide Reduction -- 6.4.1 Metal and Non-metal Doping Semiconductor -- 6.4.2 Surface Sensitization of Semiconductor -- 6.4.3 Hybridization with Another Semiconductor Material -- 6.5 Effect Operating Parameters on Carbon Dioxide Reduction -- 6.5.1 Reaction Medium -- 6.5.2 pH -- 6.5.3 Wavelength and Light Intensity -- 6.5.4 Amount of Catalyst -- 6.5.5 Particle Size -- 6.5.6 Pressure -- 6.5.7 Temperature -- 6.6 Photoreactors for Carbon Dioxide Photoconversion -- 6.6.1 Fluidized Bed Reactor -- 6.6.2 Fixed Bed Reactor -- 6.7 Conclusions -- References -- Chapter 7: Electrocatalytic Production of Methanol from Carbon Dioxide -- 7.1 Introduction -- 7.2 Liquid Phase Electrocatalytic Production of Methanol from Carbon Dioxide -- 7.2.1 Electrocatalysts -- 7.2.2 Electrolytes -- 7.2.3 Electrode Structure -- 7.2.4 Electrochemical Cell Configuration -- 7.2.5 Operation Parameters -- 7.3 Gaseous Phase Electrocatalytic Production of Methanol from Carbon Dioxide -- 7.3.1 Electrocatalysts -- 7.3.2 Electrolytes. , 7.3.3 Electrochemical Cell Configuration -- 7.3.4 Operation Parameters -- 7.4 Conclusions -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Hauppauge :Nova Science Publishers, Incorporated,
    Schlagwort(e): Polymerization. ; Polymers. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: It is well known that polymeric and composite materials are finding various applications in some critical areas of human endeavors, such as medicine, medical appliances, energy and the environment. This edition will, hopefully, evoke interest from scientists working in the fields of chemistry, polymer chemistry, electrochemistry and material science. Its applications and uses include: polymer electrolyte membrane fuel cells, sensors, actuators, coatings, electrochromic and electroluminescent materials, magnetic polymers, organo-metallic polymers, tissue engineering, methods of the immobilization of biological molecules, and dental and orthopedic applications. This edition is a highly valuable source for scientists, researchers, upper-level undergraduate and graduate students, as well as college and university professors, because it provides the most up-to-date reference work summarizing the pioneering research work in the field of polymeric and composite materials.
    Materialart: Online-Ressource
    Seiten: 1 online resource (372 pages)
    Ausgabe: 1st ed.
    ISBN: 9781629480619
    Serie: Polymer Science and Technology
    DDC: 620.192
    Sprache: Englisch
    Anmerkung: Intro -- ADVANCED FUNCTIONAL POLYMERS AND COMPOSITES: MATERIALS, DEVICES AND ALLIED APPLICATIONS. VOLUME 1 -- ADVANCED FUNCTIONAL POLYMERS AND COMPOSITES: MATERIALS, DEVICES AND ALLIED APPLICATIONS. VOLUME 1 -- Library of Congress Cataloging-in-Publication Data -- Dedication -- Contents -- Preface -- Contributors -- About the Editor -- Acknowledgments -- Chapter 1: Advances in Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells -- Abstract -- Abbreviations -- 1. Introduction -- 2. Proton Exchange Membrane Fuel Cells (PEMFCS) -- 2.1. Role of Proton Conducting Membrane in Proton Exchange Membrane Fuel Cells -- 2.2. Requirement for Proton Conducting Membrane for Proton Exchange Membrane Fuel Cells -- 2.3. Current Status of Perfluorinated Sulfonic Acid and Alternative Proton Conducting Membranes -- 2.4. Proton Transport in Sulfonic Acid Membranes -- 2.5. Challenges Facing Sulfonic Acid Membranes in Proton Exchange Membrane Fuel Cells -- 3. High Temperature Polymer Electrolyte -- Membrane Fuel Cell -- 3.1. Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells -- 3.2. Membranes Obtained by Modification with Hygroscopic Inorganic Fillers -- 3.3. Membranes Obtained by Modification with Solid Proton Conductors -- 3.4. Membranes Obtained by Modification with Less Volatile Proton Assisting Solvent -- 3.4.1. Doping with Heterocyclic Solvents -- 3.4.2. Doping with Phosphoric Acid -- 3.4.3. Radiation Grafted and Acid Doped Membranes -- 3.5. Disadvantages of Using Phosphoric Acid Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cell Applications -- 3.6. Alternative Membranes Based on Benzimidazole Derivatives -- 3.7. Alternative Benzimidazole Polymers Doped with Heteropoly Acids -- 3.8. Membrane Impregnated with Ionic Liquids -- 3.9. Summary of Membranes Obtained by Modification of Sulfonic. , Acid Ionomers -- 4. Proton Conduction Mechanism in High Temperature Proton Conducting Membrane -- Conclusion and Prospectives -- Acknowledgments -- References -- Chapter 2: Surface-Confined Ruthenium and Osmium Polypyridyl Complexes as Electrochromic Materials -- Abstract -- Abbreviations -- 1. Introduction -- 1.1. Electrochromic Windows, Displays and Mirrors -- 1.2. Classes of Electrochromic Materials -- 1.3. Metal Complexes As Electrochromic Materials -- 1.3.1. Ruthenium (II) Complexes As Electrochromic Materials -- (I). Optical Behavior of Ruthenium Complexes -- (II). Redox Behavior of Ruthenium Complexes -- (III). Role of Spacers in Dinuclear Ruthenium Complexes -- 1.3.2. Osmium (II) Complexes As Electrochromic Materials -- 1.3.3. Other Metal Complexes As Electrochromic Materials -- 1.4. Substrates Used for Electrochromic Material -- 1.5. Modification of Substrates -- 2. Surface-Confined Ruthenium Complexes -- As Electrochromic Materials -- 2.1. Chemically Adsorbed Ruthenium Complexes -- 2.2. Physically Adsorbed Ruthenium Complexes -- 3. Surface-Confined Osmium Complexes -- As Electrochromic Materials -- 3.1. Osmium Complex-Based Monolayer -- 3.2. Osmium Complex-Based Multilayer -- 4. Surface-Confined Hetero-Metallic -- Complexes As Electrochromic Materials -- 4.1. Coordinative Supramolecular Assembly As Thin Films -- Conclusion -- Acknowledgments -- References -- Chapter 3: Magnetic Polymeric Nanocomposite Materials: Basic Principles Preparations and Microwave Absorption Application -- 1Department of Materials Science, School of Applied Physics, Faculty of Science -- and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia -- 2Institute of Hydrogen Economy, Universiti Teknologi Malaysia, -- Jalan Semarak, Kuala Lumpur, Malaysia -- Abstract -- Abbreviations -- 1. Introduction -- 2. Historical Background. , 3. Interaction Mechanisms of Electromagnetic Wave -- with Materials -- 3.1. Interaction Mechanism with Conductor Materials -- 3.2. Interaction Mechanism with Dielectric Materials -- 3.3. Interaction Mechanism with Magnetic Materials -- 4. The Reason of Using Microwave Absorbing Materials -- 5. The Criteria for Choosing the Filler and the -- Importance of Matching Conditions for Ideal -- Microwave Absorbing Materials -- 5.1. Metal-Backed Single Layer Absorber Mode -- 5.2. Stand-Alone Absorbing Material Model -- 6. Types and Properties of Polymers -- 7. Magnetic Polymer Nanocomposites -- 7.1. Nanomaterials -- 7.2. Magnetic Polymer Nanocomposites' Properties -- 7.3. Magnetic Polymer Nanocomposites' Applications -- 7.4. The Importance of Dispersion in Magnetic Polymer Nanocomposites -- 8. Preparation and Processing of -- Magnetic Polymer Nanocomposites -- 8.1. In-Situ Oxidative Polymerization Method (with Sonication) -- 8.2. One-Step Chemical Method -- 8.3. Surface-Initiated Polymerization Method -- 8.4. Microemulsion Chemical Oxidative Polymerization Method -- 8.5. Reverse Micelle Microemulsion Method -- 8.6. In-Situ Inverse Microemulsion Polymerization -- 8.7. Irradiation Induced Inverse Emulsion Polymerization -- 8.8. Miniemulsion Polymerization -- 8.9. Mechanical Melt Blending Method -- 8.10. Melt Processing Method Using Ultrasonic Bath -- 8.11. Template Free Method -- 8.12. Solution Casting Method -- 8.13. Sonochemical Method -- 8.14. Electrochemical Synthesis -- 9. Electromagnetic Wave Absorption Application of Magnetic Polymer Nanocomposites -- 9.1. The Crucial Role of Magnetic Nanoparticles and Sample Thickness in the Determination of the Microwave Absorption Application -- 9.2. Effect of Magnetic Filler Size on the Microwave Absorption and/or Electromagnetic Interference Shielding Application. , 9.3. Broadening the Microwave Absorption Range for Low and High Frequency Applications Using Binary Magnetic Nanofillers -- 9.4. The Enhancement of the Microwave Absorption for Electromagnetic Interference Shielding Application Using Magnetic and Dielectric Nanofillers -- Conclusion -- References -- Chapter 4: Polyetheramide-Birth of a New Coating Material -- Abstract -- Abbreviations -- 1. Introduction -- 2. Raw Materials and Test Methods -- 3. Linseed Oil Based Polyetheramides[LPEtA] -- 4. Soybean Oil Based Polyetheramides (SPEtA) -- 5. Albizia Lebbek Benth Oil Based PEtA (ABOPEtA) -- 6. Jatropha Seed Oil Based PEtA(JPEtA) -- 6. Olive Oil Based PEtA (OPEtA) -- Conclusion -- Acknowledgments -- References -- [1] Sørensen, P. A., Kiil,S., Dam-Johansen, K. & -- Weinell, C. E. (2009). Anticorrosive coatings: a review, J. Coat. Technol. Res., 6(2), 135-176. -- Chapter 5: Advanced Functional Polymers and Composite Materials and Their Role in Electroluminescent Applications -- Abstract -- Introduction & -- Scope of the Work -- 1. Light Emitting Diodes (LEDs), Characteristics and Categories -- (a) LED- Device Configuration -- (b) Recent Developments in The LED's Technology -- In-organic Light Emitting Diode -- Materials & -- Characteristics -- 3-I. Luminescence and Scintillation from the Inorganic Phosphor Materials -- An Ideal Luminescencent Material's Characteristics -- 3-II. Scintillation -- 3-III. Inorganic Electroluminescent Materials & -- Devices -- Organic Light Emitting Diodes Devices (OELDs) -- 4- (i). OLED Characteristics -- 4-(ii). OLED- Device Configuration & -- Working Principle -- 4-(iii). General Electroluminescent Materials Used for OLED Devices -- 4-(iv). OLED Device Fabrication -- 4-(v). OLED- Electro-Optical (EO) Properties -- 4-(vi). Quantum Efficiency of OLED Devices -- The Classifications of OLED types. , 4-I. An Overview of Historical Background about Polymeric OLEDs -- (P-OLEDs) -- 4-II. Polymeric OLEDs (P-OLEDs) as Electroluminescent Devices -- 4- III. Polymeric OLEDs (P-OLEDs) Employed in Various Device's Applications -- Conclusion -- Acknowledgments -- References -- [1] Akcelrud, L. Prog. Polym. Sci. 28 (2003). 875-962. -- Chapter 6: Poly(Methacrylic Acid) and Poly (Itaconic Acid) Applications as pH-Sensitive Actuators -- Abstract -- Abbreviations -- 1. Introduction -- 2. Methacrylic Acid and Itaconic Acid -Basic Properties -- 2. Poly(methacrylic acid) and Poly(Itaconic Acid) pH-sensitive Polymers -- 2.1. Linear Systems -- 2.2. Hydrogels -- 2.3. Amphiphillic Block and Graft Copolymers (Micelles) -- 2.4. Modified Surfaces and Membranes -- Conclusion -- Acknowledgments -- References -- Chapter 7: Cell Scaffolds and Fabrication Technologies for Tissue Engineering -- Abstract -- Abbreviations -- 1. Introduction -- 2. Cell Based-Therapies for Tissue Engineering -- 3. Scaffolds Preparation Technologies -- 3.1. Nanofibrous -- 3.2. Freeze-Drying -- 3.3. Fiber Bonding -- 3.4. Phase Separation -- 3.5. Gas Foaming -- 3.6. Rapid Prototyping -- 4. Special Applications in Tissue Ingineering -- 4.1. Injectable Matrices for Cell Therapy -- 4.2. Bioceramic Matrices for Cell Therapy -- Conclusion -- Acknowledgments -- References -- Chapter 8: Immobilization of Lipase by Physical Adsorption on Selective Polymers -- Abstract -- Abbreviations -- 1. Introduction -- 2. The Mechanism of Action of Lipases -- 3. Properties of Enzymes Influenced by Immobilization -- 4. Properties of Matrices for Immobilization -- 5. Methods for Enzyme Immobilization -- 5.1. Physical Adsorption -- Advantages and Disadvantages of Enzymes Immobilization Using the Adsorption Technique -- 5.2. Ionic Binding -- 5.3. Covalent Binding. , Advantages and Disadvantages of Enzymes Immobilization Using the Covalent Technique.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Sewage-Purification. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (460 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030803346
    Serie: Environmental Chemistry for a Sustainable World Series ; v.70
    Sprache: Englisch
    Anmerkung: Intro -- Foreword -- Contents -- About the Editors -- Chapter 1: Analytical Methods for the Determination of Heavy Metals in Water -- 1.1 Introduction -- 1.2 Total Concentration and Speciation Analysis -- 1.3 Health and Legislation -- 1.4 Sample Preparation for Elemental Analysis of Heavy Metals -- 1.4.1 Solid-Phase Extraction -- 1.4.1.1 Classic Solid-Phase Extraction -- 1.4.1.1.1 Modern Sorbents for Classic Solid-Phase Extraction -- 1.4.1.1.2 Micro Solid-Phase Extraction -- 1.4.1.2 Dispersive Solid-Phase Extraction -- 1.4.1.2.1 Dispersion Techniques -- 1.4.1.2.2 Modern Sorbents for Dispersive Solid-Phase Extraction and Dispersive Micro-Solid Phase Extraction -- Nanostructured Materials -- Hybrid Materials -- 1.4.1.3 Magnetic Solid-Phase Extraction -- 1.4.1.3.1 Advanced Magnetic Sorbents -- 1.4.2 Liquid-Liquid Extraction -- 1.4.2.1 Modern Solvents Used in Liquid-Liquid Extraction -- 1.4.2.1.1 Non-ionic or Zwitterionic Surfactants -- 1.4.2.1.2 Ionic Liquids -- 1.4.2.1.3 Deep Eutectic Solvents -- 1.4.2.2 Novel Liquid-Liquid Microextraction Techniques -- 1.4.2.2.1 Dispersive Liquid-Liquid Microextraction Techniques -- 1.4.2.2.2 In-Situ Phase Separation Techniques -- 1.4.2.2.3 Cloud Point Extraction -- 1.4.2.2.4 Non-dispersive Microextraction Techniques -- 1.4.2.3 Liquid-Liquid Extraction in Flow Analysis -- 1.5 Analytical Techniques for Heavy Metal Detection -- 1.5.1 Spectroscopic Techniques -- 1.5.1.1 Atomic Absorption Spectroscopy -- 1.5.1.2 Atomic Fluorescence Spectrometry -- 1.5.1.3 Atomic Emission Spectrometry -- 1.5.1.4 Inductively Coupled Plasma-Mass Spectrometry -- 1.5.1.4.1 Single Particle Inductively Coupled Plasma-Mass Spectrometry -- 1.5.1.5 Laser-Induced Breakdown Spectroscopy -- 1.5.1.6 X-Ray Fluorescence -- 1.5.1.7 UV-Vis Spectrophotometry -- 1.5.2 Electrochemical Techniques -- 1.5.2.1 Potentiostatic Techniques. , 1.5.2.1.1 Amperometry -- 1.5.2.1.2 Chronocoulometry -- 1.5.2.1.3 Voltammetric Techniques -- 1.5.2.2 Galvanostatic Stripping Chronopotentiometry -- 1.5.2.3 Electrochemiluminescence -- 1.5.3 Other Methods -- 1.5.3.1 Ion Chromatography -- 1.5.3.2 Surface-Enhanced Raman Spectroscopy -- 1.5.3.3 Bio Methods -- 1.6 Conclusions and Future Perspectives -- References -- Chapter 2: Olive-Oil Waste for the Removal of Heavy Metals from Wastewater -- 2.1 Introduction -- 2.2 Olive Tree Pruning as Biosorbent of Heavy Metals from Aqueous Solutions -- 2.2.1 Characterization -- 2.2.2 Biosorption Tests -- 2.3 Olive Stone as Biosorbent of Heavy Metals from Aqueous Solutions -- 2.3.1 Characterization -- 2.3.2 Biosorption Tests -- 2.4 Olive Pomace and Olive-Cake as Biosorbents of Heavy Metals from Aqueous Solutions -- 2.4.1 Characterization -- 2.4.2 Biosorption Tests -- 2.5 Other Valorization Opportunities for Olive-Oil Waste -- 2.6 Conclusions -- References -- Chapter 3: Metal Oxide Composites for Heavy Metal Ions Removal -- 3.1 Introduction -- 3.2 Issues in Environmental Remediation -- 3.3 Different Types of Magnetic Sorbents -- 3.3.1 Iron Oxide Modified Nanoparticle -- 3.3.2 Zeolite -- 3.3.3 Silica -- 3.3.4 Polymer Functionalization -- 3.3.5 Chitosan and Alginate -- 3.3.6 Activated Carbon -- 3.3.7 Carbon Nanotubes (CNTs) and Graphene -- 3.3.8 Agricultural Wastes -- 3.4 Case Studies -- 3.4.1 Characterization -- 3.4.2 Factors Affecting Sorption Processes -- 3.4.3 Agro-Based Magnetic Biosorbents Recovery and Reusability -- 3.5 Conclusion -- References -- Chapter 4: Two-Dimensional Materials for Heavy Metal Removal -- 4.1 Introduction -- 4.2 Heavy Metal Ions Removal Mechanism -- 4.2.1 Surface Complexation -- 4.2.2 Van der Waals Interaction -- 4.2.3 Ion Exchange -- 4.3 Different Types of Two-Dimensional Material for Heavy Metal Removal. , 4.3.1 Graphene-Based Two-Dimensional Materials -- 4.3.1.1 Structure -- 4.3.1.2 Graphene-Based Materials for Heavy Metal Removal -- 4.3.2 Dichalcogenides -- 4.3.2.1 Structure -- 4.3.2.2 Molybdenum Disulfide for Heavy Metal Removal -- 4.3.3 MXenes -- 4.3.3.1 Structure -- 4.3.3.2 MXenes for Heavy Metal Removal -- 4.3.4 Clay Minerals -- 4.3.4.1 Structure -- 4.3.4.2 Clay Mineral for Heavy Metal Removal -- 4.3.5 Layered Double Hydroxides -- 4.3.5.1 Structure -- 4.3.5.2 Layered Double Hydroxides for Heavy Metal Removal -- 4.3.6 Layered Zeolites -- 4.3.6.1 Structure -- 4.3.6.2 Layered Zeolites for Heavy Metal Removal -- 4.3.7 Other Two-Dimensional Materials -- 4.4 Heavy Metal Removal Other than Adsorption -- 4.5 Conclusions and Perspectives -- Appendix: List of Two-Dimensional Materials that Mentioned in this Chapter for Heavy Metal Removal and their Removal Capacities -- References -- Chapter 5: Membranes for Heavy Metals Removal -- 5.1 Introduction -- 5.2 Electrodialysis -- 5.2.1 Electrodialysis Applied to Metal Removal -- 5.2.2 Principle -- 5.2.3 Evaluation and Control Parameters -- 5.2.4 Use in Electroplating Industry -- 5.2.4.1 Zinc -- 5.2.4.2 Chromium -- 5.2.4.3 Copper -- 5.2.4.4 Nickel -- 5.2.5 Use in Mining and Mineral Processing Industry -- 5.2.6 Final Considerations -- References -- Chapter 6: Metal Oxides for Removal of Heavy Metal Ions -- 6.1 Introduction -- 6.2 Adsorption Methods -- 6.3 Metal Oxides for the Removal of Heavy Metal Ions from Water -- 6.3.1 Titanium Dioxide -- 6.3.2 Manganese Dioxide -- 6.3.3 Iron Oxide -- 6.3.4 Aluminum Oxide -- 6.3.5 Binary Metal Oxides -- 6.4 Conclusion -- References -- Chapter 7: Organic-Inorganic Ion Exchange Materials for Heavy Metal Removal from Water -- 7.1 Introduction -- 7.2 Ion Exchange Process -- 7.3 Ion Exchange Materials -- 7.3.1 Inorganic Ion Exchangers -- 7.3.2 Organic Ion Exchangers. , 7.4 Heavy Metal Removal with Ion Exchange Materials -- 7.4.1 Lead (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.2 Mercury (II) Removal from Waste Water with Organic-Inorganic Ion Exchangers -- 7.4.3 Cadmium (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.4 Nickel (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.5 Chromium (III, VI) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.6 Copper (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.7 Zinc (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.5 Conclusion -- References -- Chapter 8: Low-Cost Technology for Heavy Metal Cleaning from Water -- 8.1 Introduction -- 8.2 Sources and Impact -- 8.3 Different Routes of Contamination -- 8.4 Conventional Water Treatment Methods -- 8.4.1 Preliminary Treatment -- 8.4.2 Secondary Water Treatment -- 8.4.3 Tertiary Water Treatment -- 8.4.4 Membrane Filtration -- 8.5 Advanced Technology for Heavy Metal Ion Removal -- 8.5.1 Nano-Adsorption -- 8.5.2 Molecularly-Imprinted Polymers -- 8.5.3 Layered Double Hydroxides (LDH) and Covalent-Organic Framework (COF) -- 8.5.4 Emerging Membrane Technologies -- 8.6 Low-Cost and Biotechnological Approaches -- 8.6.1 Biosorption -- 8.6.2 Microbial Remediation -- 8.6.3 Biotechnological Strategies -- 8.7 Conclusion -- References -- Chapter 9: Use of Nanomaterials for Heavy Metal Remediation -- 9.1 General Introduction -- 9.2 Heavy Metals in the Environment -- 9.2.1 Characteristics of Selected Heavy Metals -- 9.3 Wastewater Treatment -- 9.4 Nanomaterials -- 9.4.1 Clay Minerals -- 9.4.2 Layered Double Hydroxide and Their Mixed-Oxides Counterparts -- 9.4.3 Zeolites -- 9.4.4 Two-dimensional Early Transition Metal Carbides and Carbonitrides -- 9.4.5 Metal Based Nanoparticles. , 9.4.5.1 Zero-valent Metals -- 9.4.5.2 Metal Oxides -- 9.4.6 Carbon-based Materials -- 9.4.6.1 Carbon Nanotubes -- 9.4.6.2 Fullerenes -- 9.4.6.3 Graphene -- 9.4.6.4 Graphene Oxide -- 9.4.6.5 Reduced Graphene Oxide -- 9.4.6.6 Graphitic Carbon Nitride -- 9.4.7 Metal Organic Frameworks -- 9.5 Disadvantages of Using Nanomaterials -- 9.6 Conclusions -- References -- Chapter 10: Ecoengineered Approaches for the Remediation of Polluted River Ecosystems -- 10.1 Introduction -- 10.2 Occurrence of Pollutants, Emerging Contaminants and Their Riverine Fates -- 10.3 Hazardous Effects of Water Contaminants on Aquatic and Terrestrial Biota -- 10.4 Historic Concepts of River Bioremediation -- 10.5 Physico-chemical River Remediation Methods -- 10.6 Eco-engineered River Water Remediation Technologies -- 10.6.1 Plant Based River Remediation Systems -- 10.6.1.1 Constructed Wetlands -- 10.6.1.2 Ecological Floating Wetlands, Beds and Islands -- 10.6.1.3 Eco-tanks -- 10.6.1.4 Bio-racks -- 10.6.2 Microorganisms Based River Remediation Systems -- 10.6.2.1 Biofilm Based Eco-engineered Treatment Systems -- 10.6.2.1.1 Bio-filters in River Bioremediation -- 10.6.2.2 Periphyton Based Technologies -- 10.7 In Situ Emerging Integrated Systems for the River Bioremediation -- 10.8 Concluding Remarks -- References -- Chapter 11: Ballast Water Definition, Components, Aquatic Invasive Species, Control and Management and Treatment Technologies -- 11.1 Introduction -- 11.2 Component of Ballast Water -- 11.3 Aquatic Invasive Species -- 11.4 The International Convention for the Control and Management of Ships Ballast Water and Sediments -- 11.5 IMO Standards for Ballast Water Quality -- 11.6 Management Options of Ballast Water -- 11.7 Ballast Water Treatment Technologies -- 11.7.1 Mechanical Treatment -- 11.7.2 Physical Treatment -- 11.7.2.1 Ultrasound and Cavitation. , 11.7.3 Chemical Treatment.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Inorganic ion exchange materials. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (264 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030060855
    DDC: 543.0893
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- 1 Use of Ion-Exchange Resins in Dehydration Reactions -- 1.1 Introduction -- 1.2 Catalytic Processes of Dehydration -- 1.2.1 Dehydration of Alcohols to Alkenes -- 1.2.2 Dehydration of Alcohols to Ethers -- 1.2.3 Dehydration of Carbohydrates -- 1.2.4 Other Dehydration Processes -- 1.3 Conclusion -- References -- 2 The Application of Ion-Exchange Resins in Hydrogenation Reactions -- 2.1 Introduction -- 2.2 Ion-exchange resin as a catalyst and support in reaction processes -- 2.2.1 Hydrogenation reactions and catalysis -- 2.3 Ion-Exchange Resins as Catalyst and Support for Hydrogenation Reactions -- 2.3.1 Hydrogenation of Unsaturated Hydrocarbon Compounds Using Ion-Exchange Resins -- 2.3.2 Reduction, Removal, and Hydrogenation of Nitrates Using Ion-Exchange Resin -- 2.3.3 Hydrodechlorination Reaction Using Ion-Exchange Resin -- 2.4 Conclusions -- References -- 3 Use of Ion-Exchange Resins in Alkylation Reactions -- 3.1 Introduction -- 3.2 Aspects of Ion-Exchange Resins for the Alkylation Reaction -- 3.3 Alkylation Process Using Ion-Exchange Resins -- 3.3.1 Reactors and Heterogeneous Catalysis -- 3.3.2 Alkylation Process -- 3.3.3 A Process for Continuous Alkylation of Phenol Using Ion-Exchange Resin -- 3.3.4 Process for Alkylating Benzene with Tri- and Tetra-substituted Olefins with a Sulfonic Acid Type Ion-Exchanger Resin -- 3.4 Alkylation of Alkenes with Isoalkanes -- 3.5 The Reaction of Alkylation of Sulfur Compounds with Olefins -- 3.6 Alkylation of Aromatic Compounds -- 3.6.1 The Reaction of Aromatic Compounds with Olefins -- 3.6.2 The Reaction of Aromatic Compounds with Alkyl Halides and Alcohols -- 3.7 Alkylation of Phenol -- 3.8 Alkylation of Furan and Indol Derivatives -- 3.8.1 Indole Alkylation -- 3.8.2 Furan Alkylation -- 3.9 Conclusions -- References. , 4 Ion Exchange Resins Catalysed Esterification for the Production of Value Added Petrochemicals and Oleochemicals -- 4.1 Introduction -- 4.2 Ion Exchange Resin Catalysed Esterification for the Production of Petrochemicals -- 4.2.1 Esterification of Acetic Acid -- 4.2.2 Esterification of Acrylic Acid -- 4.2.3 Esterification of Lactic Acid -- 4.2.4 Esterification of Maleic Acid -- 4.3 Ion Exchange Resin Catalysed Esterification for the Production of Oleochemicals -- 4.3.1 Esterification of Oleic Acid -- 4.4 Esterification of Butyric Acid -- 4.5 Esterification of Palmitic Acid -- 4.6 Esterification of Nanonoic Acid -- 4.7 Esterification of Free Fatty Acid in Plant Oil -- 4.8 Summary and Future Prospects -- References -- 5 Synthesis and Control of Silver Aggregates in Ion-Exchanged Silicate Glass by Thermal Annealing and Gamma Irradiation -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Glass Composition -- 5.2.2 Ion Exchange -- 5.2.3 Gamma Irradiation and Thermal Treatment -- 5.2.4 UV-Vis Optical Absorption Spectrometry -- 5.3 Results and Discussion -- 5.3.1 Effect of Ion Exchange Conditions -- 5.3.2 Effect of Thermal Annealing Conditions -- 5.3.3 Effect of Gamma Irradiation -- 5.3.4 Combined Effects of Gamma Irradiation and Thermal Annealing -- 5.4 Conclusion -- References -- 6 Use of Ion-Exchange Resin in Reactive Separation -- 6.1 Introduction -- 6.2 Use of Ion-Exchange Resin in Reactive Separation -- 6.2.1 Reactive Distillation (RD) -- 6.3 Reactive Chromatography (RC) -- 6.4 Reactive Extraction (RE) -- 6.5 Reactive Absorption (RA) -- 6.6 Conclusion -- References -- 7 Chromatographic Reactive Separations -- 7.1 Introduction -- 7.1.1 Reactive Distillation (RD) -- 7.1.2 Reactive Chromatography (RC) -- 7.1.3 Reactive Extraction (RE) -- 7.1.4 Reactive Membranes (RM) -- 7.1.5 Reactive Crystallization (RCr) -- 7.2 Concluding Remarks -- References. , 8 Ion-Exchange Chromatography in Separation and Purification of Beverages -- 8.1 Introduction -- 8.2 Ion-Exchange Resins -- 8.2.1 Properties of Ion-Exchange Resins Used for Industrial Applications -- 8.2.2 Applications in Drinking Water Treatment -- 8.2.3 Major Ion-Exchange Processes in Water Treatment -- 8.2.4 Applications in Nonalcoholic Beverages -- 8.2.5 Applications in Alcoholic Beverages -- 8.3 Conclusions -- References -- 9 Ion Exchange Resin Technology in Recovery of Precious and Noble Metals -- 9.1 Introduction -- 9.2 Recovery of Metals from Their Pregnant Solutions -- 9.2.1 Gold -- 9.2.2 Recovery and Removal of Silver from Aqueous Industrial Solutions by Ion Exchange Technology -- 9.2.3 Removal of Copper from Industrial Effluents by Ion Exchange Technology -- 9.2.4 Uranium -- 9.2.5 Removal of Iron and Sulfate Ions from Copper Streams by Ion Exchange Technology -- 9.3 Conclusions -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Carbon sequestration. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (170 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030292980
    Serie: Sustainable Agriculture Reviews Series ; v.37
    DDC: 577.14400000000001
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Chapter 1: Introduction to Carbon Dioxide Capture and Storage -- 1.1 Introduction -- 1.2 Carbon Dioxide -- 1.3 Carbon Dioxide Capture and Storage Technology -- 1.3.1 Capturing and Separation -- 1.3.2 Transport -- 1.3.3 Injection and Storage -- 1.3.3.1 Integrity Issues -- 1.3.4 Monitoring -- 1.4 Technological and Scientific Concerns -- 1.5 Summary -- References -- Chapter 2: Sources of Carbon Dioxide and Environmental Issues -- 2.1 Introduction -- 2.2 Source of Carbon Dioxide -- 2.2.1 Anthropogenic Activities -- 2.2.1.1 Carbon Dioxide Emissions from Fossil Fuels´ Combustion -- 2.2.1.2 Trends in emissions -- 2.2.1.3 Industrial Emissions -- 2.2.1.4 Overpopulation and Carbon Dioxide Emissions -- 2.2.1.5 Agriculture Sector -- 2.2.2 Natural Sources of Carbon Dioxide -- 2.2.2.1 Forest Fires -- 2.2.2.2 Volcanic eruption -- 2.3 Environmental Issues Related to Carbon Dioxide Emissions -- 2.3.1 Cyclones and Hurricanes -- 2.3.2 Droughts -- 2.3.3 Heat Waves -- 2.3.4 Food System and Food Security -- 2.3.5 Glaciers Melting -- 2.4 Conclusion -- References -- Chapter 3: Carbon Capture Utilization and Storage Supply Chain: Analysis, Modeling and Optimization -- 3.1 Introduction -- 3.2 Status of Carbon Capture Utilization and Storage Supply Chain -- 3.3 Carbon Capture Utilization and Storage Technology Overview -- 3.3.1 CO2 Capture Options -- 3.3.1.1 Absorption Technology -- 3.3.1.2 Adsorption Technology -- 3.3.1.3 Membrane Technology -- 3.3.1.4 Chemical Looping Combustion -- 3.3.1.5 Cryogenic Technology -- 3.3.1.6 Hybrid Technology -- 3.3.2 CO2 Utilization Options -- 3.3.3 CO2 Storage Options -- 3.4 Design and Optimization of Carbon Capture Utilization and Storage Supply Chain -- 3.4.1 Methodology for the Design -- 3.4.2 Development of Optimization Tool -- 3.5 Cost Analysis. , 3.6 Literature Work About Carbon Capture Utilization and Storage Supply Chain -- 3.7 Conclusions -- References -- Chapter 4: Natural Carbon Sequestration by Forestry -- 4.1 Introduction -- 4.2 Influence of the Environment and Climate Variables in the Global Carbon Cycle -- 4.2.1 Nitrogen Fertilisation -- 4.2.2 Temperature and Soil Water Availability -- 4.2.3 Radiation -- 4.2.4 Climate Extremes and Disturbance -- 4.3 Forests Global Carbon Sink -- References -- Chapter 5: Carbon Sequestration via Biomineralization: Processes, Applications and Future Directions -- 5.1 Introduction -- 5.2 Biomineralization Processes and Mechanisms -- 5.2.1 Microbially-Mediated Biomineralization -- 5.2.2 Plant-Mediated Biomineralization -- 5.3 Carbon Dioxide Sequestration -- 5.3.1 Microbially-Mediated Biomineralization -- 5.3.2 Plant-Mediated Biomineralization -- 5.3.2.1 The Case of the Iroko Tree -- 5.3.2.2 The Case of Australian Acacia Species -- 5.3.2.3 Carbon Occlusion in Biominerals -- 5.4 Knowledge Gaps and Future Directions -- 5.5 Summary and Conclusions -- References -- Chapter 6: A Review of Coupled Geo-Chemo-Mechanical Impacts of CO2-Shale Interaction on Enhanced Shale Gas Recovery -- 6.1 Introduction -- 6.2 Properties of Shale and CO2 -- 6.2.1 Shale -- 6.2.2 CO2/Supercritical CO2 -- 6.3 Interaction of CO2 and Shale -- 6.3.1 Interaction of Shale with Anhydrous CO2 -- 6.3.2 CO2-Water-Rock Geochemical Reactions in Shale -- 6.3.3 CO2 Adsorption Induced Swelling in Shale -- 6.4 Effect of CO2-Shale Interaction on Rock Properties -- 6.4.1 Porosity and Permeability -- 6.4.2 Mechanical Properties -- 6.4.3 Adsorption Properties -- 6.5 Effect of CO2-Shale Interaction on Groundwater Quality -- 6.6 Conclusions -- References -- Chapter 7: Plantation Methods and Restoration Techniques for Enhanced Blue Carbon Sequestration by Mangroves -- 7.1 Introduction. , 7.2 Blue Carbon Sequestration -- 7.2.1 Carbon Balance in a Mangrove Ecosystem -- 7.3 Plantation Techniques for Mangroves -- 7.3.1 Establishment of Mangrove Nursery -- 7.3.2 Transplantation of Nursery Grown Seedlings -- 7.3.3 Direct Seeding Method -- 7.3.4 Drain and Trench Method -- 7.3.5 Fish Bone Canal System -- 7.4 Post Plantation Management -- 7.5 Community Participation in Mangrove Plantation -- 7.6 Conclusion -- References -- Chapter 8: Biowaste for Carbon Sequestration -- 8.1 Introduction -- 8.2 Sources of Biowastes -- 8.3 Environmental Impact of Biowastes -- 8.4 Application of Biowastes for Carbon Sequestration -- 8.4.1 Composting Technology -- 8.4.2 As a Fertilizer/Organic Farming -- 8.4.3 Energy -- 8.4.4 Biochar Technology -- 8.5 Future Research Directions -- 8.6 Conclusion -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...