GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Canadian Science Publishing  (1)
Material
Publisher
  • Canadian Science Publishing  (1)
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Canadian Science Publishing ; 1989
    In:  Canadian Journal of Microbiology Vol. 35, No. 1 ( 1989-01-01), p. 43-51
    In: Canadian Journal of Microbiology, Canadian Science Publishing, Vol. 35, No. 1 ( 1989-01-01), p. 43-51
    Abstract: A cladistic analysis of 553 5S rRNA sequences has revealed a Ur-5S rRNA, the ancestor of all present-day 5S rRNA molecules. Previously stated characteristic differences between the eubacterial and eukaryotic molecules, namely, the length base-pairing schemes of helices D, can be used as a marker for the various archaebacterial branches. One model comprises Thermococcus, Thermoplasma, methanobacteria, and halobacteria; a second comprises the Sulfolobales; and a third is represented only by the single organism Octopus Spring species 1. A relaxed selection pressure on helix E with subsequent deletions is observed in Methanobacteriales, Methanococcales, and eubacteria. The secondary structures are supported by enzymatic digestion and chemical modification studies of the 5S rRNAs. Reconstitution of eubacterial 50S ribosomal subunits with 5S rRNA from Halobacterium and Thermoplasma has revealed 100% incorporation, while eukaryotic 5S rRNAs yielded a 50% incorporation. Relevant positions of the small-subunit rRNA are selected to answer the question of the monophyly of archaebacteria. Eight positions account for monophyly, eight for an ancestry of eubacteria with halophile methanogens and eukaryotes with eocytes (paraphyly of archaebacteria), and two for an ancestry of eubacteria with eocytes. A refinement of the neighborliness method of S. Sattath and A. Tversky resulted in a monophyly of archaebacteria when all positions are treated equally and in a paraphyly when tranversions are weighted twice over transitions.Key words: archaebacteria, ribosomal RNA, evolution, cladistic analysis.
    Type of Medium: Online Resource
    ISSN: 0008-4166 , 1480-3275
    RVK:
    Language: English
    Publisher: Canadian Science Publishing
    Publication Date: 1989
    detail.hit.zdb_id: 280534-0
    detail.hit.zdb_id: 1481972-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...