GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press (CUP)  (1)
Material
Publisher
  • Cambridge University Press (CUP)  (1)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2011
    In:  Earth and Environmental Science Transactions of the Royal Society of Edinburgh Vol. 102, No. 1 ( 2011-03), p. 17-23
    In: Earth and Environmental Science Transactions of the Royal Society of Edinburgh, Cambridge University Press (CUP), Vol. 102, No. 1 ( 2011-03), p. 17-23
    Abstract: Three main types of eye have been defined in trilobites; holochroal, schizochroal and the rare abathochroal. At least in holochroal and schizochroal eyes, the lenses consist of oriented calcitic microcrystallites, the so-called trabecula, which run uninterruptedly throughout the lens from top to bottom. It is argued here that these are primary structures and not diagenetic. Holochroal eyes are commonly accepted to correspond to apposition eyes, which are the most common type of compound eyes in arthropods living today. Schizochroal eyes, present only in phacopine trilobites, are characterised by a doublet lens structure, with an aplanatic interface, correcting spherical aberration of the thick lenses to form a sharp focus for incident rays travelling parallel with the optical axis. This classic model seems to be functional for many phacopines. In these the trabecula are present, though all juxtaposed, forming a solid block. In the lenses of some phacopid species, however, the microcrystallites are separated from each other by gaps. If, during life, these gaps were filled with organic material, as the lens grew from the larval stages, or post-ecdysially, each trabeculum would be isolated from its neighbours by an organic sheath. A simple model is proposed here for the generation of the organic sheath surrounding each trabeculum. If the individual trabecula were isolated from each other, then the possibility of a new kind of visual system exists in these ‘derived’ phacopines. The differences between the refractive indexes inside and outside the trabeculum would ensure that each trabeculum acted as a light-guide, so that the whole ‘lens’ becomes a light guide bundle. This would result in a pixelled visual system, unique in the animal realm, but an archetype for modern technology of data transfer.
    Type of Medium: Online Resource
    ISSN: 1755-6910 , 1755-6929
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2011
    detail.hit.zdb_id: 2411260-4
    detail.hit.zdb_id: 2402633-5
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...