GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press (CUP)  (2)
  • 1
    In: Quaternary Research, Cambridge University Press (CUP), Vol. 118 ( 2024-03), p. 126-141
    Abstract: Recent research has shown the potential of speleothem δ 13 C to record a range of environmental processes. Here, we report on 230 Th-dated stalagmite δ 13 C records for southwest Sulawesi, Indonesia, over the last 40,000 yr to investigate the relationship between tropical vegetation productivity and atmospheric methane concentrations. We demonstrate that the Sulawesi stalagmite δ 13 C record is driven by changes in vegetation productivity and soil respiration and explore the link between soil respiration and tropical methane emissions using HadCM3 and the Sheffield Dynamic Global Vegetation Model. The model indicates that changes in soil respiration are primarily driven by changes in temperature and CO 2 , in line with our interpretation of stalagmite δ 13 C. In turn, modelled methane emissions are driven by soil respiration, providing a mechanism that links methane to stalagmite δ 13 C. This relationship is particularly strong during the last glaciation, indicating a key role for the tropics in controlling atmospheric methane when emissions from high-latitude boreal wetlands were suppressed. With further investigation, the link between δ 13 C in stalagmites and tropical methane could provide a low-latitude proxy complementary to polar ice core records to improve our understanding of the glacial–interglacial methane budget.
    Type of Medium: Online Resource
    ISSN: 0033-5894 , 1096-0287
    RVK:
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2024
    detail.hit.zdb_id: 1471589-2
    detail.hit.zdb_id: 205711-6
    SSG: 13
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Quaternary Research, Cambridge University Press (CUP), Vol. 69, No. 2 ( 2008-03), p. 306-315
    Abstract: Uranium-series dating of oxygen and carbon isotope records for stalagmite SJ3 collected in Songjia Cave, central China, shows significant variation in past climate and environment during the period 20–10 ka. Stalagmite SJ3 is located more than 1000 km inland of the coastal Hulu Cave in East China and more than 700 km north of the Dongge Cave in Southwest China and despite minor differences, displays a clear first-order similarity with the Hulu and Dongge records. The coldest climatic phase since the Last Glacial Maximum, which is associated with the Heinrich Event 1 in the North Atlantic region, was clearly recorded in SJ3 between 17.6 and 14.5 ka, in good agreement in timing, duration and extent with the records from Hulu and Dongge caves and the Greenland ice core. The results indicate that there have been synchronous and significant climatic changes across monsoonal China and strong teleconnections between the North Atlantic and East Asia regions during the period 20–10 ka. This is much different from the Holocene Optimum which shows a time shift of more than several thousands years from southeast coastal to inland China. It is likely that temperature change at northern high latitudes during glacial periods exerts stronger influence on the Asian summer monsoon relative to insolation and appears to be capable of perturbing large-scale atmospheric/oceanic circulation patterns in the Northern Hemisphere and thus monsoonal rainfall and paleovegetation in East Asia. Climatic signals in the North Atlantic region propagate rapidly to East Asia during glacial periods by influencing the winter land–sea temperature contrast in the East Asian monsoon region.
    Type of Medium: Online Resource
    ISSN: 0033-5894 , 1096-0287
    RVK:
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2008
    detail.hit.zdb_id: 1471589-2
    detail.hit.zdb_id: 205711-6
    SSG: 13
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...