GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press (CUP)  (1)
Material
Publisher
  • Cambridge University Press (CUP)  (1)
Language
Years
  • 1
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2011
    In:  Journal of Fluid Mechanics Vol. 675 ( 2011-05-25), p. 347-368
    In: Journal of Fluid Mechanics, Cambridge University Press (CUP), Vol. 675 ( 2011-05-25), p. 347-368
    Abstract: We present experimental results for the collapse of rectangular columns of sand down rough, inclined, parallel-walled channels. Results for basal inclination θ varying between 4.2° and 25° are compared with previous results for horizontal channels. Shallow-water theory can be usefully combined with scaling relationships obtained by dimensional analysis to yield analytical functions of the maximum runout distance, the maximum deposit height and the time to reach the maximum runout. While the theory excellently predicts the maximum lengths of the deposit it generally overestimates the runout time. The inertial flows are characterized by a moving internal interface separating upper flowing and lower static regions of material. In an initial free-fall phase of collapse the deposited area (= volume per unit width) below the internal interface varies with the square-root of time, independent of the initial height of the column and channel inclination. In the subsequent, lateral spreading phase the deposition rate decreases with increasing basal inclination or with decreasing initial height. The local deposition rate at any fixed distance is a constant, dependent on the column aspect ratio, the channel inclination and the longitudinal position, but invariant with flow velocity and depth. In the lateral spreading phase, vertical velocity profile in the flowing layer take a universal form and are independent of flow depth and velocity. They can be characterized by a shear rate as a function of channel inclination and a length scale describing the fraction of the column involved in flow.
    Type of Medium: Online Resource
    ISSN: 0022-1120 , 1469-7645
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2011
    detail.hit.zdb_id: 1472346-3
    detail.hit.zdb_id: 218334-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...