GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press (CUP)  (4)
  • 1
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2010
    In:  Journal of Fluid Mechanics Vol. 654 ( 2010-07-10), p. 207-231
    In: Journal of Fluid Mechanics, Cambridge University Press (CUP), Vol. 654 ( 2010-07-10), p. 207-231
    Abstract: We study the modulational instability of geophysical Rossby and plasma drift waves within the Charney–Hasegawa–Mima (CHM) model both theoretically, using truncated (four-mode and three-mode) models, and numerically, using direct simulations of CHM equation in the Fourier space. We review the linear theory of Gill ( Geophys. Fluid Dyn. , vol. 6, 1974, p. 29) and extend it to show that for strong primary waves the most unstable modes are perpendicular to the primary wave, which correspond to generation of a zonal flow if the primary wave is purely meridional. For weak waves, the maximum growth occurs for off-zonal inclined modulations that are close to being in three-wave resonance with the primary wave. Our numerical simulations confirm the theoretical predictions of the linear theory as well as the nonlinear jet pinching predicted by Manin & Nazarenko ( Phys. Fluids , vol. 6, 1994, p. 1158). We find that, for strong primary waves, these narrow zonal jets further roll up into Kármán-like vortex streets, and at this moment the truncated models fail. For weak primary waves, the growth of the unstable mode reverses and the system oscillates between a dominant jet and a dominate primary wave, so that the truncated description holds for longer. The two-dimensional vortex streets appear to be more stable than purely one-dimensional zonal jets, and their zonal-averaged speed can reach amplitudes much stronger than is allowed by the Rayleigh–Kuo instability criterion for the one-dimensional case. In the long term, the system transitions to turbulence helped by the vortex-pairing instability (for strong waves) and the resonant wave–wave interactions (for weak waves).
    Type of Medium: Online Resource
    ISSN: 0022-1120 , 1469-7645
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2010
    detail.hit.zdb_id: 1472346-3
    detail.hit.zdb_id: 218334-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2007
    In:  Radiocarbon Vol. 49, No. 1 ( 2007), p. 131-136
    In: Radiocarbon, Cambridge University Press (CUP), Vol. 49, No. 1 ( 2007), p. 131-136
    Abstract: Beginning approximately cal 1400 BC, Austronesian-speaking Lapita peoples began a colonizing migration across Oceania from the Bismarck Archipelago to western Polynesia. The first point of entry into Polynesia occurred on the island of Tongatapu in Tonga with subsequent spread northward to Samoa along a natural sailing corridor. Radiocarbon measurements from recent excavations at 4 sites in the northern Vava'u islands of Tonga provide a chronology for the final stage of this diaspora. These dates indicate that the northern expansion was almost immediate, that a paucity of Lapita sites to the north cannot be explained as a result of lag time in the settlement process, and that decorated Lapita ceramics disappeared rapidly after first landfalls.
    Type of Medium: Online Resource
    ISSN: 0033-8222 , 1945-5755
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2007
    detail.hit.zdb_id: 2028560-7
    SSG: 11
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 1998
    In:  Symposium - International Astronomical Union Vol. 188 ( 1998), p. 171-174
    In: Symposium - International Astronomical Union, Cambridge University Press (CUP), Vol. 188 ( 1998), p. 171-174
    Abstract: Since the discovery of fading X-rays from Gamma-Ray Bursts (GRBs) with BeppoSAX (Piro et al. 1997, Costa et al. 1997), world-wide follow-up observations in optical band have achieved the fruitful results. The case of GRB 970228, there was an optical transient, coincides with the BeppoSAX position and faded (Paradijs et al. 1997, Sahu et al. 1997). These optical observations also confirmed the extended component, which was associated with the optical transient. The new transient are fading with a power-law function in time and the later observation of HST confirmed the extended emission is stable (Fruchter et al. 1997). This extended object seems to be a distant galaxy and strongly suggests to be the host.
    Type of Medium: Online Resource
    ISSN: 0074-1809
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 1998
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2014
    In:  Journal of Fluid Mechanics Vol. 756 ( 2014-10-10), p. 309-327
    In: Journal of Fluid Mechanics, Cambridge University Press (CUP), Vol. 756 ( 2014-10-10), p. 309-327
    Abstract: This paper looks at the two-layer ocean model from a wave-turbulence (WT) perspective. A symmetric form of the two-layer kinetic equation for Rossby waves is derived using canonical variables, allowing the turbulent cascade of energy between the barotropic and baroclinic modes to be studied. It is already well known that in two-layers, energy is transferred via triad interactions from the large-scale baroclinic modes to the baroclinic and barotropic modes at the Rossby deformation scale, where barotropization takes place, and from there to the large-scale barotropic modes via an inverse transfer. However, by applying WT theory, we find that energy is transferred via dominant $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\{+--\}$ triads with one barotropic component and two baroclinic components, and that the direct transfer of energy is local and the inverse energy transfer is non-local. We study this non-locality using scale separation and obtain a system of coupled equations for the small-scale baroclinic component and the large-scale barotropic component. Since the total energy of the small-scale component is not conserved, but the total barotropic plus baroclinic energy is conserved, the baroclinic energy loss at small scales will be compensated by the growth of the barotropic energy at large scales. Using the frequency resonance condition, we show that in the presence of the beta-effect this transfer is mostly anisotropic and mostly to the zonal component.
    Type of Medium: Online Resource
    ISSN: 0022-1120 , 1469-7645
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2014
    detail.hit.zdb_id: 1472346-3
    detail.hit.zdb_id: 218334-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...