GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press (CUP)  (1)
Material
Publisher
  • Cambridge University Press (CUP)  (1)
Language
Years
  • 1
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2020
    In:  Clays and Clay Minerals Vol. 68, No. 4 ( 2020-08), p. 309-318
    In: Clays and Clay Minerals, Cambridge University Press (CUP), Vol. 68, No. 4 ( 2020-08), p. 309-318
    Abstract: The negative effects of dye-contaminated wastewater on humans and the environment are well known, so the wastewater must be treated carefully before discharge into the environment. To overcome those impacts, the search for environmentally friendly and low-cost materials is essential, especially in developing countries The objective of the present study was to determine the feasibility of using bauxite from Malaysia as a new and efficient ceramic, hollow-fiber membrane for the degradation of reactive dyes in wastewater. A porous, hollow-fiber membrane was fabricated from bauxite (BHFM) using a phase-inversion technique, followed by sintering at various temperatures. The BHFM consisted of two types of voids, having either a finger-like or a sponge-like structure. As the sintering temperature was increased, the porosity of the BHFM decreased from 46.5 to 9.5%. The greatest mechanical strength of 308.1 MPa was achieved when the BHFM was loaded with 55 wt.% of bauxite and sintered at 1450°C. The remaining 45 wt.% consisted of solvent, polymer binder, and dispersant. The BHFM functioned well as a membrane for microfiltration and a support membrane for ultrafiltration. BHFM with loading of 45 wt.%, 50 wt.%, and 55 wt.% successfully eliminated 90%, 94%, and 98% of 10 ppm reactive dye (RB5) when sintered at the highest temperature.
    Type of Medium: Online Resource
    ISSN: 0009-8604 , 1552-8367
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2045991-9
    detail.hit.zdb_id: 221428-3
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...