GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (1)
  • Copernicus Publications  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2019-01-02
    Description: The detection and monitoring of meltwater within firn presents a significant monitoring challenge. We explore the potential of small wireless sensors (ETracer+, ET+) to measure temperature, pressure, electrical conductivity and thus the presence or absence of meltwater within firn, through tests in the dry snow zone at the East Greenland Ice Core Project site. The tested sensor platforms are small, robust and low cost, and communicate data via a VHF radio link to surface receivers. The sensors were deployed in low-temperature firn at the centre and shear margins of an ice stream for 4 weeks, and a ‘bucket experiment’ was used to test the detection of water within otherwise dry firn. The tests showed the ET+ could log subsurface temperatures and transmit the recorded data through up to 150 m dry firn. Two VHF receivers were tested: an autonomous phase-sensitive radio-echo sounder (ApRES) and a WinRadio. The ApRES can combine high-resolution imaging of the firn layers (by radio-echo sounding) with in situ measurements from the sensors, to build up a high spatial and temporal resolution picture of the subsurface. These results indicate that wireless sensors have great potential for long-term monitoring of firn processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3The Cryosphere, Copernicus Publications, 16, pp. 1469-1482
    Publication Date: 2022-05-09
    Description: Basal melt of ice shelves is a key factor governing discharge of ice from the Antarctic Ice Sheet as a result of its effects on buttressing. Here, we use radio echo sounding to determine the spatial variability of the basal melt rate of the southern Filchner Ice Shelf, Antarctica, along the inflow of Support Force Glacier. We find moderate melt rates with a maximum of 1.13 m/a about 50 km downstream of the grounding line. The variability of the melt rates over distances of a few kilometres is low (all but one 〈0.15 m/a at 2 km distance), indicating that measurements on coarse observational grids are able to yield a representative melt rate distribution. A comparison with remote-sensing-based melt rates revealed that, for the study area, large differences were due to inaccuracies in the estimation of vertical strain rates from remote sensing velocity fields. These inaccuracies can be overcome by using modern velocity fields.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...