GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • CSIRO Publishing  (1)
Material
Publisher
  • CSIRO Publishing  (1)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    CSIRO Publishing ; 2015
    In:  Australian Journal of Chemistry Vol. 68, No. 10 ( 2015), p. 1562-
    In: Australian Journal of Chemistry, CSIRO Publishing, Vol. 68, No. 10 ( 2015), p. 1562-
    Abstract: Eu-Doped Bi2O3/CeO2 composites were successfully synthesized by a facile sol–gel–calcination route. The as-prepared composites were prepared with different molar ratios of Bi/Ce/Eu by the sol–gel route, and then calcined at 500°C for 2 h. The photocatalytic efficiencies of all composites were tested by degradation of methyl orange (MO) under visible light irradiation. The result suggested that the best composite is the one that was prepared with a Bi/Ce/Eu mole ratio of 8 : 8 : 1, and achieved a MO degradation rate of nearly 98.5 % within 2 h of irradiation. The as-prepared composites were characterized by X-ray diffraction, scanning electron microscopy, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The X-ray diffraction and scanning electron microscopy results suggested that Eu doping may have led to some lattice distortion and particle aggregation that enhanced the photocatalytic activity of the photocatalyst. The UV-visible diffuse reflectance spectroscopy and photoluminescence spectroscopy results showed that Eu-doped Bi2O3/CeO2 exhibited higher visible light response properties and enhanced separation of the photogenerated electron–hole pairs, which is the main reason for the higher photocatalytic activity. In general, this study could provide a facile route to synthesize Eu-doped Bi2O3/CeO2 composites with enhanced photocatalytic activity by a sol–gel–calcination route for environmental purification.
    Type of Medium: Online Resource
    ISSN: 0004-9425
    RVK:
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...