GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • COPERNICUS GESELLSCHAFT MBH  (1)
  • Wiley-Blackwell  (1)
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 29 (1990), S. 1701-1714 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The calculation of temperature distributions for systems exchanging radiation heat requires as a first step the determination of the heat fluxes caused by radiation at its surfaces. The functional of the variational principle is the starting point of a numerical solution method.By using finite element procedures a system of linear equations is derived, which supplies an approximation of the radiosity. Having the radiosity, the heat flux at the surfaces, which governs the boundary condition for the temperature distribution in the structure, can be calculated. A method of determining the view-factors using the concept of the finite element method is also given.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-17
    Description: The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the arctic coasts in a changing environment. Particular focus is given to the German Bight in the North Sea as a prime example for a heavily used coastal area, and Svalbard as an example of an arctic coast that is under strong pressure due to global change. The automated observing and modelling system COSYNA is designed to monitor real time conditions, provide short-term forecasts and data products, and to assess the impact of anthropogenically induced change. Observations are carried out combining satellite and radar remote sensing with various in situ platforms. Novel sensors, instruments, and algorithms are developed to further improve the understanding of the interdisciplinary interactions between physics, biogeochemistry, and the ecology of coastal seas. New modelling and data assimilation techniques are used to integrate observations and models in a quasi-operational system providing descriptions and forecasts of key hydrographic variables. Data and data products are publically available free of charge and in real time. They are used by multiple interest groups in science, agencies, politics, industry, and the public.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...