GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • COPERNICUS GESELLSCHAFT MBH  (1)
  • PUBLIC LIBRARY SCIENCE  (1)
  • Springer Nature  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2021-09-07
    Description: The deep ocean is home to a group of broad-collared hemichordates—the so-called ‘lophenteropneusts’—that have been photographed gliding on the sea floor1,2,3,4,5,6,7,8 but have not previously been collected. It has been claimed that these worms have collar tentacles and blend morphological features of the two main hemichordate body plans, namely the tentacle-less enteropneusts and the tentacle-bearing pterobranchs. Consequently, lophenteropneusts have been invoked as missing links to suggest that the former evolved into the latter5. The most significant aspect of the lophenteropneust hypothesis is its prediction that the fundamental body plan within a basal phylum of deuterostomes was enteropneust-like. The assumption of such an ancestral state influences ideas about the evolution of the vertebrates from the invertebrates9,10,11,12,13,14. Here we report on the first collected specimen of a broad-collared, deep-sea enteropneust and describe it as a new family, genus and species. The collar, although disproportionately broad, lacks tentacles. In addition, we find no evidence of tentacles in the available deep-sea photographs (published and unpublished) of broad-collared enteropneusts, including those formerly designated as lophenteropneusts. Thus, the lophenteropneust hypothesis was based on misinterpretation of deep-sea photographs of low quality and should no longer be used to support the idea that the enteropneust body plan is basal within the phylum Hemichordata.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PUBLIC LIBRARY SCIENCE
    In:  EPIC3PLoS ONE, PUBLIC LIBRARY SCIENCE, 13(10)(e02001), ISSN: 1932-6203
    Publication Date: 2019-01-24
    Description: Permanent sea-ice cover and low primary productivity in the mostly ice-covered Central Arctic ocean basins result in significantly lower biomass and density of macrobenthos in the abyssal plains compared to the continental slopes. However, little is known on bathymetric and regional effects on the macrobenthos diversity. This study synthesizes new and available macrobenthos data to provide a baseline for future studies of the effects of Arctic change on macrofauna community composition in the Arctic basins. Samples collected during three expeditions (in 1993, 2012 and 2015) at 37 stations on the slope of the Barents and Laptev Seas and in the abyssal of the Nansen and Amundsen Basins in the depth range from 38 m to 4381 m were used for a quantitative analysis of species composition, abundance and biomass. Benthic communities clustered in five depth ranges across the slope and basin. A parabolic pattern of species diversity change with depth was found, with the diversity maximum for macrofauna at the shelf edge at depths of 100–300 m. This deviates from the typical species richness peak at mid-slope depths of 1500–3000 m in temperate oceans. Due to the limited availability of standardized benthos data, it remains difficult to assess if and how the significant sea-ice loss observed in the past decade has affected benthic community composition. The polychaete Ymerana pteropoda and the bryozoan Nolella sp. were found for the first time in the deep Nansen and Amundsen Basins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Biogeosciences, COPERNICUS GESELLSCHAFT MBH, 10, pp. 3359-3374, ISSN: 1726-4170
    Publication Date: 2014-09-17
    Description: During a survey of the H°akon Mosby mud volcano (HMMV), located on the Bear Island fan in the southwest Barents Sea at �1250m water depth, different habitats inside the volcano caldera and outside it were hotographed using a towed camera platform, an Ocean Floor Observation System (OFOS). Three transects were performed across the caldera and one outside, in the background area, each transect was �2 km in length. We compared the density, taxa richness and diversity of nonsymbiotrophic megafauna in areas inside the volcano caldera with different bacterial mat and pogonophoran tubeworm cover. Significant variations in megafaunal composition, density and distribution were found between considered areas. Total megafaunal density was highest in areas of dense pogonophoran populations (mean 52.9 ind.m−2) followed by areas of plain light-coloured sediment that were devoid of bacterial mats and tube worms (mean 37.7 ind.m−2). The lowest densities were recorded in areas of dense bacterial mats (mean �1.4 ind.m−2). Five taxa contributed to most of the observed variation: the ophiuroid Ophiocten gracilis, lysianassid amphipods, the pycnogonid Nymphon macronix, the caprellid Metacaprella horrida and the fish Lycodes squamiventer. In agreement with previous studies, three zones within the HMMV caldera were distinguished, based on different habitats and megafaunal composition: “bacterial mats”, “pogonophoran fields” and “plain light-coloured sediments”. The zones were arranged almost concentrically around the central part of the caldera that was devoid of visible megafauna. The total number of taxa showed little variation inside (24 spp.) and outside the caldera (26 spp.). The density, diversity and composition of megafauna varied substantially between plain lightcoloured sediment areas inside the caldera and the HMMV background. Megafaunal density was lower in the background (mean 25.3 ind.m−2) compared to areas of plain light-coloured sediments inside the caldera. So the effect of the mud-volcano environment on benthic communities is expressed in increasing of biomass, changing of taxa composition and proportions of most taxonomic groups.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...