GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: Highlights • Nutrient and carbon fluxes are key processes in land-ocean interactions. • We sampled along the river-estuary-ocean system according to travel time of water. • The river was autotrophic with phytoplankton growth, high pH and oxygen concentration, and CO2 undersaturation. • Phytoplankton died off in the estuary causing low pH and oxygen concentration, CO2 supersaturation, and nutrient release. • The approach is suitable to investigate single events such as hydrological extremes. Nutrient and carbon dynamics within the river-estuary-coastal water systems are key processes in understanding the flux of matter from the terrestrial environment to the ocean. Here, we analysed those dynamics by following a sampling approach based on the travel time of water and an advanced calculation of nutrient fluxes in the tidal part. We started with a nearly Lagrangian sampling of the river (River Elbe, Germany; 580 km within 8 days). After a subsequent investigation of the estuary, we followed the plume of the river by raster sampling the German Bight (North Sea) using three ships simultaneously. In the river, we detected intensive longitudinal growth of phytoplankton connected with high oxygen saturation and pH values and an undersaturation of CO2, whereas concentrations of dissolved nutrients declined. In the estuary, the Elbe shifted from an autotrophic to a heterotrophic system: Phytoplankton died off upstream of the salinity gradient, causing minima in oxygen saturation and pH, supersaturation of CO2, and a release of nutrients. In the shelf region, phytoplankton and nutrient concentrations were low, oxygen was close to saturation, and pH was within a typical marine range. Over all sections, oxygen saturation was positively related to pH and negatively to pCO2. Corresponding to the significant particulated nutrient flux via phytoplankton, flux rates of dissolved nutrients from river into estuary were low and determined by depleted concentrations. In contrast, fluxes from the estuary to the coastal waters were higher and the pattern was determined by tidal current. Overall, the approach is appropriate to better understand land-ocean fluxes, particularly to illuminate the importance of these fluxes under different seasonal and hydrological conditions, including flood and drought events.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Biogeosciences, COPERNICUS GESELLSCHAFT MBH, 14(3), pp. 541-557, ISSN: 1726-4170
    Publication Date: 2017-06-06
    Description: Within the context of predicted and observed increase in droughts and floods with climate change, large summer floods are likely to become more frequent. These extreme events can alter typical biogeochemical patterns in coastal systems. The extreme Elbe River flood in June, 2013 not only caused major damages in several European countries, but also generated large scale biogeochemical changes in the Elbe Estuary and the adjacent German Bight. Due to a number of well documented and unusual atmospheric conditions, the early summer of 2013 in Central and Eastern Europe was colder and wetter than usual, with saturated soils, and higher than average cumulative precipitation. Additional precipitation at the end of May, and beginning of June, 2013, caused widespread floods within the Danube and Elbe Rivers, as well as billions of euros in damages. The floods generated the largest summer discharge on record within the last 140 years. The high-frequency monitoring network in the German Bight available within the Coastal Observing System for Northern and Arctic Seas (COSYNA) captured the flood influence on the German Bight. Monitoring data from a FerryBox station in the Elbe Estuary (Cuxhaven) and from a FerryBox platform aboard the M/V Funny Girl Ferry (traveling between Büsum and Helgoland) documented the salinity changes on the German Bight, which persisted for about 2 months after the peak discharge. The flood generated a large influx of nutrients, dissolved and particulate organic carbon on the coast. These conditions subsequently led to the onset of a chlorophyll bloom within the German Bight, observed by dissolved oxygen supersaturation, and higher than usual pH in surface coastal waters. The prolonged stratification also led to widespread bottom water dissolved oxygen depletion, unusual for the south eastern German Bight in the summer.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...