GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-15
    Description: The oxygen isotope composition of speleothems is a widely used proxy for past climate change. Robust use of this proxy depends on understanding the relationship between precipitation and cave drip water δ18O. Here, we present the first global analysis, based on data from 163 drip sites, from 39 caves on five continents, showing that drip water δ18O is most similar to the amount-weighted precipitation δ18O where mean annual temperature (MAT) is 〈 10 °C. By contrast, for seasonal climates with MAT 〉 10 °C and 〈 16 °C, drip water δ18O records the recharge-weighted δ18O. This implies that the δ18O of speleothems (formed in near isotopic equilibrium) are most likely to directly reflect meteoric precipitation in cool climates only. In warmer and drier environments, speleothems will have a seasonal bias toward the precipitation δ18O of recharge periods and, in some cases, the extent of evaporative fractionation of stored karst water.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Climate of the Past, COPERNICUS GESELLSCHAFT MBH, 17(3), pp. 1119-1138, ISSN: 1814-9332
    Publication Date: 2021-07-26
    Description: Reconstruction of past changes in monsoon climate from speleothem oxygen isotope (δ18O) records is complex because δ18O signals can be influenced by multiple factors including changes in precipitation, precipitation recycling over land, temperature at the moisture source, and changes in the moisture source region and transport pathway. Here, we analyse 〉 150 speleothem records of the Speleothem Isotopes Synthesis and AnaLysis (SISAL) database to produce composite regional trends in δ18O in monsoon regions; compositing minimises the influence of site-specific karst and cave processes that can influence individual site records. We compare speleothem δ18O observations with isotope-enabled climate model simulations to investigate the specific climatic factors causing these regional trends. We focus on differences in δ18O signals between the mid-Holocene, the peak of the Last Interglacial (Marine Isotope Stage 5e) and the Last Glacial Maximum as well as on δ18O evolution through the Holocene. Differences in speleothem δ18O between the mid-Holocene and the Last Interglacial in the East Asian and Indian monsoons are small, despite the larger summer insolation values during the Last Interglacial. Last Glacial Maximum δ18O values are significantly less negative than interglacial values. Comparison with simulated glacial–interglacial δ18O shows that changes are principally driven by global shifts in temperature and regional precipitation. Holocene speleothem δ18O records show distinct and coherent regional trends. Trends are similar to summer insolation in India, China and southwestern South America, but they are different in the Indonesian–Australian region. Redundancy analysis shows that 37 % of Holocene variability can be accounted for by latitude and longitude, supporting the differentiation of records into individual monsoon regions. Regression analysis of simulated precipitation δ18O and climate variables show significant relationships between global Holocene monsoon δ18O trends and changes in precipitation, atmospheric circulation and (to a lesser extent) source area temperature, whereas precipitation recycling is non-significant. However, there are differences in regional-scale mechanisms: there are clear relationships between changes in precipitation and δ18O for India, southwestern South America and the Indonesian–Australian regions but not for the East Asian monsoon. Changes in atmospheric circulation contribute to δ18O trends in the East Asian, Indian and Indonesian–Australian monsoons, and a weak source area temperature effect is observed over southern and central America and Asia. Precipitation recycling is influential in southwestern South America and southern Africa. Overall, our analyses show that it is possible to differentiate the impacts of specific climatic mechanisms influencing precipitation δ18O and use this analysis to interpret changes in speleothem δ18O.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Magnesium calcites were synthesized from aqueous solutions supersaturated with respect to calcite at 25, 40, 60, and 80 °C in gas tight batch reactors for up to 35 days. Any amorphous material still present in the precipitates was removed using a partial dissolution treatment. Resulting purified Mg-calcite had Mg contents ranging from 6 to 32 mol% MgCO3. An isotopic steady-state was attained between the fluid and the precipitated solids within two weeks at 25 °C. δ18O values derived from the experiments at steady-state, depend on both temperature and the Mg content of the calcite in accord with: 1000lnαMg-calcite–H2O=18,030/T−32.42+(6×108/T3–5.47×106/T2+16,780/T−17.21)×CMg where αMg-calcite–H2O represents the calcite–water oxygen isotope fractionation factor, T refers to the temperature in °K and CMg denotes the mole percent of MgCO3 in the calcite. These results indicate that the addition of 5 mol% MgCO3 into the calcite increases 1000lnαMg-calcite–H2O by 0.88 as compared to that of pure calcite at 25 °C. This difference could lead to a 4.2 °C decrease in estimated formation temperature estimates. These results demonstrate that the accurate interpretation of oxygen isotope fractionation in magnesium calcites requires explicit provision for the effect of magnesium on oxygen isotope fractionation factors. Highlights ► The effect of Mg on calcite–aqueous fluid oxygen isotope fractionation was investigated. ► Mg incorporation is increasing the calcite–aqueous fluid oxygen isotope fractionation. ► This effect is reduced at higher temperatures. ► Obtained results are important for paleo-temperature estimation. Gadget timed out while loading
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-17
    Keywords: Bergen Florida; DATE/TIME; Standardised sea-level pressure anomaly; Weather station/meteorological observation; WMO_50540; WST
    Type: Dataset
    Format: text/tab-separated-values, 1404 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-17
    Keywords: DATE/TIME; Ireland; Standardised sea-level pressure anomaly; Valentia Observatory; Weather station/meteorological observation; WMO_03953; WST
    Type: Dataset
    Format: text/tab-separated-values, 1808 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-17
    Keywords: File content; File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 10 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Comas-Bru, Laia; Hernández, Armand (2018): Reconciling North Atlantic climate modes: Revised monthly indices for the East Atlantic and the Scandinavian patterns beyond the 20th century. Earth System Science Data, 10, 2329-2344, https://doi.org/10.5194/essd-10-2329-2018
    Publication Date: 2023-01-17
    Description: Climate variability in the North Atlantic sector is commonly ascribed to the North Atlantic Oscillation. However, recent studies have shown that taking into account the second and third mode of variability (namely the East Atlantic – EA – and the Scandinavian – SCA – patterns) greatly improves our understanding of their controlling mechanisms, as well as their impact on climate. The most commonly used EA and SCA indices span the period from 1950 to present which is too short, for example, to calibrate palaeoclimate records or assess their variability over multi-decadal scales. To tackle this, here, we make available seasonal (3-months) EOF-based indices of NAO, EA and SCA indices covering the period from 1851 to present (Dataset 2); and compare them with their equivalent instrumental indices calculated as standarised sea-level pressure anomalies from Valentia Observatory, Ireland and Bergen Florida, Norway (Dataset 1)
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-13
    Description: We present a quantitative NAO reconstruction for the central Iberian Peninsula (IP) over the last two millennia, along with its uncertainties, by applying a Bayesian approach.
    Keywords: Age; AGE; Bayesian Modeling; CIM12-04A; Common Era; Iberian Central Range, Spain; lake sediments; Modes of Variability; NAO; North Atlantic Oscillation index; Uncertainty
    Type: Dataset
    Format: text/tab-separated-values, 1302 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...