GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Aquatic Microbial Ecology, INTER-RESEARCH, 80, pp. 181-192, ISSN: 0948-3055
    Publication Date: 2017-10-06
    Description: ABSTRACT: Salinity is an important environmental control of aerobic methane oxidation, which reduces the emission of the potent greenhouse gas methane into the atmosphere. The effect of salinity on methane oxidation is especially severe in river estuaries and adjacent coastal waters, which are important sources of methane emission and, at the same time, are usually characterized by pronounced salinity gradients. Using methane oxidation rates determined by a radiotracer technique as a measure of methanotrophic activity, we tested the effect of immediate and gradual salinity changes on pure cultures of methanotrophic bacteria, and natural freshwater (Elbe River) and natural marine (North Sea) methanotrophic populations. According to our results, Methylomonas sp. and Methylosinus trichosporium are resistant to an increase in salinity, whereas Methylovulum sp. and Methylobacter luteus are sensitive to such an increase. Natural methanotrophic populations from freshwater are more resistant to an increase in salinity than those from marine water are to a decrease in salinity. In contrast to an immediate change of salinity, gradual change (1.25 PSU d−1) can attenuate salinity stress. Experiments with the natural populations revealed different reactions to changes in salinity; thus, we assume that the initial composition of the methanotrophic population, i.e. the ratio of sensitive versus resistant strains, also governs the community response to salinity stress.Repeated experiments with the natural populations revealed different reactions to changes of salinity; thus we assume that the initial composition of the methanotrophic population, i.e. the ratio of sensitive and resistant strains, also governs the community response to salinity stress.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Aquatic Microbial Ecology, INTER-RESEARCH, 83, pp. 35-48, ISSN: 0948-3055
    Publication Date: 2019-05-24
    Description: Shelf sea areas are the primary oceanic source for methane release, the most abundant hydrocarbon in the atmosphere. As such, the southern North Sea’s methane concentration is mainly determined by river runoff and tidal marshes. Within such a highly variable temperate estuary, this study is the first to reveal detailed information on the in situ activity, abundance and community structure of methane oxidizing bacteria along a transect from the marine environment near Helgoland island to the riverine harbor of Hamburg, Germany. The in situ methane oxidation rate was determined with a radio tracer, and methane concentration with the head-space method. Abundance and diversity of the methanotrophic bacterial community in the water column was assessed with quantitative polymerase chain reaction for the particulate methane monooxygenase and monooxygenase intergenic spacer analysis. Median abundances ranged from 2.8 × 104 cells l−1 in the marine environment to 7.5 × 105 cells l−1 in the riverine environment. Except for salinity, no conclusive linear correlation between any environmental parameter and the abundance of methanotrophs could be determined. Relating activity with abundance of methanotrophs showed that about 70% of the population is inactive, especially in the coastal and marine environment. This study found distinct operational taxonomic unit (OTU) community compositions among the 3 environmental categories (river, coast, marine). Several identified OTUs have been reported previously and imply a wide geographic occurrence. Overall, we propose that salinity is the most important driver of differing communities in the riverine, coastal and marine environment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Biogeosciences, COPERNICUS GESELLSCHAFT MBH, 14, pp. 4985-5002, ISSN: 1726-4170
    Publication Date: 2017-11-10
    Description: The Lena River is one of the largest Russian rivers draining into the Laptev Sea. The predicted increases in global temperatures are expected to cause the permafrost areas surrounding the Lena Delta to melt at increasing rates. This melting will result in high amounts of methane reaching the waters of the Lena and the adjacent Laptev Sea. The only biological sink that can lower methane concentrations within this system is methane oxidation by methanotrophic bacteria. However, the polar estuary of the Lena River, due to its strong fluctuations in salinity and temperature, is a challenging environment for bacteria. We determined the activity and abundance of aerobic methanotrophic bacteria by a tracer method and by the quantitative polymerase chain reaction. We described the methanotrophic population with a molecular fingerprinting method (monooxygenase intergenic spacer analysis), as well as the methane distribution (via a headspace method) and other abiotic parameters, in the Lena Delta in September 2013. The median methane concentrations were 22 nmol L−1 for riverine water (salinity (S)  〈 5), 19 nmol L−1 for mixed water (5 〈 S 〈 20) and 28 nmol L−1 for polar water (S 〉 20). The Lena River was not the source of methane in surface water, and the methane concentrations of the bottom water were mainly influenced by the methane concentration in surface sediments. However, the bacterial populations of the riverine and polar waters showed similar methane oxidation rates (0.419 and 0.400 nmol L−1 d−1), despite a higher relative abundance of methanotrophs and a higher estimated diversity in the riverine water than in the polar water. The methane turnover times ranged from 167 days in mixed water and 91 days in riverine water to only 36 days in polar water. The environmental parameters influencing the methane oxidation rate and the methanotrophic population also differed between the water masses. We postulate the presence of a riverine methanotrophic population that is limited by sub-optimal temperatures and substrate concentrations and a polar methanotrophic population that is well adapted to the cold and methane-poor polar environment but limited by a lack of nitrogen. The diffusive methane flux into the atmosphere ranged from 4 to 163 µmol m2 d−1 (median 24). The diffusive methane flux accounted for a loss of 8 % of the total methane inventory of the investigated area, whereas the methanotrophic bacteria consumed only 1 % of this methane inventory. Our results underscore the importance of measuring the methane oxidation activities in polar estuaries, and they indicate a population-level differentiation between riverine and polar water methanotrophs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-11
    Description: Three strains of methanotrophic bacteria (EbAT, EbBT and Eb1) were isolated from the River Elbe, Germany. These Gram-negative, rod-shaped or coccoid cells contain intracytoplasmic membranes perpendicular to the cell surface. Colonies and liquid cultures appeared bright-pink. The major cellular fatty acids were 12:0 and 14:0, in addition in Eb1 the FA 16:1ω5t was also dominant. Methane and methanol were utilized as sole carbon sources by EbBT and Eb1, while EbAT could not use methanol. All strains oxidize methane using the particulate methane monooxygenase. Both strains contain an additional soluble methane monooxygenase. The strains grew optimally at 15–25 °C and at pH 6 and 8. Based on 16S rRNA gene analysis recovered from the full genome, the phylogenetic position of EbAT is robustly outside any species clade with its closest relatives being Methylomonas sp. MK1 (98.24%) and Methylomonas sp. 11b (98.11%). Its closest type strain is Methylomonas methanica NCIMB11130 (97.91%). The 16S rRNA genes of EbBT are highly similar to Methylomonas methanica strains with Methylomonas methanica R-45371 as the closest relative (99.87% sequence identity). However, average nucleotide identity (ANI) and digital DNA-DNA-hybridization (dDDH) values reveal it as distinct species. The DNA G + C contents were 51.07 mol% and 51.5 mol% for EbAT and EbBT, and 50.7 mol% for Eb1, respectively. Strains EbAT and EbBT are representing two novel species within the genus Methylomonas. For strain EbAT we propose the name Methylomonas albis sp. nov (LMG 29958, JCM 32282) and for EbBT, we propose the name Methylomonas fluvii sp. nov (LMG 29959, JCM 32283). Eco-physiological descriptions for both strains are provided. Strain Eb1 (LMG 30323, JCM 32281) is a member of the species Methylovulum psychrotolerans. This genus is so far only represented by two isolates but Eb1 is the first isolate from a temperate environment; so, an emended description of the species is given.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Biogeosciences, COPERNICUS GESELLSCHAFT MBH, 10, pp. 4641-4652, ISSN: 1726-4170
    Publication Date: 2019-07-17
    Description: The Lena River is one of the largest Russian rivers draining into the Laptev Sea. The permafrost areas surrounding the Lena are predicted to thaw at increasing rates due to global temperature increases. With this thawing, large amounts of carbon—either organic or in the gaseous forms, carbon dioxide and methane—will reach the waters of the Lena and the adjacent Buor Khaya Bay (Laptev Sea). Methane concentrations and the isotopic signal of methane in the waters of the Lena Delta and estuary were monitored from 2008 to 2010. Creeks draining from permafrost soils produced hotspots for methane input into the river system (median concentration 1500 nM) compared with concentrations of 30 – 85 nM observed in the main channels of the Lena. No microbial methane oxidation could be detected, thus diffusion is the main process of methane removal. We estimated that the riverine diffusive methane flux is 3 – 10 times higher than the flux from surrounding terrestric environment. To maintain the observed methane concentrations in the river, additional methane sources are necessary. The methane rich creeks could be responsible for this input. In the estuary of Buor Khaya Bay, methane concentrations decreased to 26 – 33 nM. However, within the bay no consistent temporal and spatial pattern could be observed. The methane rich waters of the river were not diluted with marine water, because of a strong stratification of the water column. Thus, methane is released from the estuary and from the river mainly by diffusion into the atmosphere
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...