GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Royal Society of London
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences, 362 (1487). pp. 2061-2078.
    Publication Date: 2021-08-23
    Description: The rates of metabolism in animals vary tremendously throughout the biosphere. The origins of this variation are a matter of active debate with some scientists highlighting the importance of anatomical or environmental constraints, while others emphasize the diversity of ecological roles that organisms play and the associated energy demands. Here, we analyse metabolic rates in diverse marine taxa, with special emphasis on patterns of metabolic rate across a depth gradient, in an effort to understand the extent and underlying causes of variation. The conclusion from this analysis is that low rates of metabolism, in the deep sea and elsewhere, do not result from resource (e.g. food or oxygen) limitation or from temperature or pressure constraint. While metabolic rates do decline strongly with depth in several important animal groups, for others metabolism in abyssal species proceeds as fast as in ecologically similar shallow-water species at equivalent temperatures. Rather, high metabolic demand follows strong selection for locomotory capacity among visual predators inhabiting well-lit oceanic waters. Relaxation of this selection where visual predation is limited provides an opportunity for reduced energy expenditure. Large-scale metabolic variation in the ocean results from interspecific differences in ecological energy demand.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-13
    Description: The jumbo squid, Dosidicus gigas, can survive extended forays into the oxygen minimum zone (OMZ) of the Eastern Pacific Ocean. Previous studies have demonstrated reduced oxygen consumption and a limited anaerobic contribution to ATP production, suggesting the capacity for substantial metabolic suppression during hypoxic exposure. Here, we provide a more complete description of energy metabolism and explore the expression of proteins indicative of transcriptional and translational arrest that may contribute to metabolic suppression. We demonstrate a suppression of total ATP demand under hypoxic conditions (1% oxygen, PO2=0.8 kPa) in both juveniles (52%) and adults (35%) of the jumbo squid. Oxygen consumption rates are reduced to 20% under hypoxia relative to air-saturated controls. Concentrations of arginine phosphate (Arg-P) and ATP declined initially, reaching a new steady state (~30% of controls) after the first hour of hypoxic exposure. Octopine began accumulating after the first hour of hypoxic exposure, once Arg-P breakdown resulted in sufficient free arginine for substrate. Octopine reached levels near 30 mmol g−1 after 3.4 h of hypoxic exposure. Succinate did increase through hypoxia but contributed minimally to total ATP production. Glycogenolysis in mantle muscle presumably serves to maintain muscle functionality and balance energetics during hypoxia. We provide evidence that post-translational modifications on histone proteins and translation factors serve as a primary means of energy conservation and that select components of the stress response are altered in hypoxic squids. Reduced ATP consumption under hypoxia serves to maintain ATP levels, prolong fuel store use and minimize the accumulation of acidic intermediates of anaerobic ATP-generating pathways during prolonged diel forays into the OMZ. Metabolic suppression likely limits active, daytime foraging at depth in the core of the OMZ, but confers an energetic advantage over competitors that must remain in warm, oxygenated surface waters. Moreover, the capacity for metabolic suppression provides habitat flexibility as OMZs expand as a result of climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...