GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Research  (2)
  • CAU  (1)
  • Forschungszentrum Jülich, Projektträger Biologie, Energie, Ökologie, Bereich Meeres- und Polarforschung  (1)
  • 1
    facet.materialart.
    Unknown
    CAU
    In:  [Talk] In: The Lübeck Retreat, Collaborative Research Centre SFB 574, Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters, 23.05.-25.05.2012, Lübeck . The Lübeck Retreat - final colloquium of SFB 574, May 23-25, 2012: program & abstracts ; p. 6 .
    Publication Date: 2019-09-23
    Description: About 1000 km of the South Chilean margin were ruptured in 1960 by the Mw 9.5 Great Chile Earthquake. Early in 2010 the immediate area to the north was affected by the Mw 8.8 Maule Earthquake. In the area of the rupture boundary three giant Pleistocene submarine slope failures are observed in bathymetric and reflection seismic data. The slope failures each shifted volumes between 253 km$ and 472 km$ of slope sediments, compacted accretionary wedge material and continental framework rock from the continental slope into the trench. Seismic reflection data image an undisturbed well layered sedimentary trench fill and a continuous décollement in the areas where no slope failures are observed. However, at the exact locations of the slope failures, which coincide with the boundaries of the 1960 and 2010 ruptures, chaotic slide deposits compose the lower part of the trench-fill. At these locations no continuous décollement has developed. We speculate that the underthrusting of the highly inhomogeneous slide deposits prevents the development of a continuous décollement and thus the buildup of a thin (few millimeters) slip zone that is continuous in space as necessary for earthquake rupture propagation. Thus the 1960 Great Chile – 2010 Maule earthquake rupture boundary seems to be controlled by the underthrusting of products of giant submarine slope failures which impeded further propagation of earthquake rupture during both events. Our results emphasize that upper plate mass wasting, if it impacts on the internal structure and composition of the subduction channel rocks, can play a key role in defining seismotectonic segmentation at convergent plate boundaries.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Forschungszentrum Jülich, Projektträger Biologie, Energie, Ökologie, Bereich Meeres- und Polarforschung
    In:  [Talk] In: Statusseminar Meeresforschung mit FS Sonne 2011, 09.-10.02.2011, Hannover . Tagungsband / Meeresforschung mit FS Sonne : Statusseminar 2011 ; pp. 88-90 .
    Publication Date: 2012-07-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: The Mw 8.8 megathrust earthquake that occurred on 27 February 2010 offshore the Maule region of central Chile triggered a destructive tsunami. Whether the earthquake rupture extended to the shallow part of the plate boundary near the trench remains controversial. The up-dip limit of rupture during large subduction zone earthquakes has important implications for tsunami generation and for the rheological behavior of the sedimentary prism in accretionary margins. However, in general, the slip models derived from tsunami wave modeling and seismological data are poorly constrained by direct seafloor geodetic observations. We difference swath bathymetric data acquired across the trench in 2008, 2011 and 2012 and find ∼3-5 m of uplift of the seafloor landward of the deformation front, at the eastern edge of the trench. Modeling suggests this is compatible with slip extending seaward, at least, to within ∼6 km of the deformation front. After the Mw 9.0 Tohoku-oki earthquake, this result for the Maule earthquake represents only the second time that repeated bathymetric data has been used to detect the deformation following megathrust earthquakes, providing methodological guidelines for this relatively inexpensive way of obtaining seafloor geodetic data across subduction zone.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Bathymetry (seafloor depth), is a critical parameter providing the geospatial context for a multitude of marine scientific studies. Since 1997, the International Bathymetric Chart of the Arctic Ocean (IBCAO) has been the authoritative source of bathymetry for the Arctic Ocean. IBCAO has merged its efforts with the Nippon Foundation-GEBCO-Seabed 2030 Project, with the goal of mapping all of the oceans by 2030. Here we present the latest version (IBCAO Ver. 4.0), with more than twice the resolution (200 × 200 m versus 500 × 500 m) and with individual depth soundings constraining three times more area of the Arctic Ocean (∼19.8% versus 6.7%), than the previous IBCAO Ver. 3.0 released in 2012. Modern multibeam bathymetry comprises ∼14.3% in Ver. 4.0 compared to ∼5.4% in Ver. 3.0. Thus, the new IBCAO Ver. 4.0 has substantially more seafloor morphological information that offers new insights into a range of submarine features and processes; for example, the improved portrayal of Greenland fjords better serves predictive modelling of the fate of the Greenland Ice Sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...