GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • CAMBRIDGE UNIV PRESS  (1)
  • Society for Neuroscience  (1)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Neuroscience 33 (2013): 8009-8021, doi:10.1523/JNEUROSCI.4505-12.2013.
    Description: Neurotransmission requires a continuously available pool of synaptic vesicles (SVs) that can fuse with the plasma membrane and release their neurotransmitter contents upon stimulation. After fusion, SV membranes and membrane proteins are retrieved from the presynaptic plasma membrane by clathrin-mediated endocytosis. After the internalization of a clathrin-coated vesicle, the vesicle must uncoat to replenish the pool of SVs. Clathrin-coated vesicle uncoating requires ATP and is mediated by the ubiquitous molecular chaperone Hsc70. In vitro, depolymerized clathrin forms a stable complex with Hsc70*ADP. This complex can be dissociated by nucleotide exchange factors (NEFs) that release ADP from Hsc70, allowing ATP to bind and induce disruption of the clathrin:Hsc70 association. Whether NEFs generally play similar roles in vesicle trafficking in vivo and whether they play such roles in SV endocytosis in particular is unknown. To address this question, we used information from recent structural and mechanistic studies of Hsp70:NEF and Hsp70:co-chaperone interactions to design a NEF inhibitor. Using acute perturbations at giant reticulospinal synapses of the sea lamprey (Petromyzon marinus), we found that this NEF inhibitor inhibited SV endocytosis. When this inhibitor was mutated so that it could no longer bind and inhibit Hsp110 (a NEF that we find to be highly abundant in brain cytosol), its ability to inhibit SV endocytosis was eliminated. These observations indicate that the action of a NEF, most likely Hsp110, is normally required during SV trafficking to release clathrin from Hsc70 and make it available for additional rounds of endocytosis.
    Description: This work was supported by the National Institutes of Health (Grant #NS029051 to E.M.L. and Grant #NS078165 to J.R.M.).
    Description: 2013-11-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    CAMBRIDGE UNIV PRESS
    In:  EPIC3Journal of the Marine Biological Association of the United Kingdom, CAMBRIDGE UNIV PRESS, 99, pp. 1171-1180, ISSN: 0025-3154
    Publication Date: 2020-05-19
    Description: Where two species occupy the same habitat and similar niches, competition is likely to drive small-scale spatial niche separation or resource partitioning that may not be immediately apparent. A stable isotope approach was used to investigate potential trophic niche separation between co-existing rocky shore crabs in the North-West (NW) Arabian Gulf. Leptodius exaratus and Pilumnopeus convexus which occupy similar shore height on the same rocky intertidal habitats. We also investigated conspecific differences between males vs females and adults vs juveniles. δ15N results indicated that adults of both species occupy a high trophic level in the rocky shore community, suggesting similar functional roles and potential for competition for food resources, while significant differences in δ13C values indicated differences in dietary sources between the two species, and also changes in diet between juveniles and adults in both species. MixSIAR analysis of δ15N and δ13C data confirmed field observations that both species are generalist omnivores, with potential for direct competition including adult predation on juveniles, including conspecifics. Differentiation in isotopic niches (SIBER analysis) was mainly driven by the significant differences in δ13C values, suggesting that co-existence of the two crab species is at least in part mediated by trophic niche separation or dietary resource partitioning, with some (unquantified) potential for spatial resource partitioning at the microhabitat level.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...