GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Research Data Alliance
    In:  EPIC3Research Data Alliance Tenth Plenary Meeting, Montréal, Canada, 2017-09-19-2017-09-21Montréal, Canada, Research Data Alliance
    Publication Date: 2018-04-30
    Description: The International Network for Terrestrial Research and Monitoring in the Arctic (INTERACT) is a EU Horizon 2020 funded infrastructure project seeking to provide a geographically comprehensive infrastructure for arctic and high altitude research stations. The overall objective of the project is to facilitate the identification of environmental and ecological change, the understanding of change and prediction of future changes. The second phase of the project commenced October 2016. One of the major tasks in the project is to create a coordinated and unified data management approach that would optimize potential future reuse, sharing, and guarantee data and metadata stewardship and preservation. Herein we present the preliminary plan to carry out this objective by focusing on four principles: Findability, Accessibility, Interoperability, and Reusability (FAIR). Currently, 79 sites in arctic and northern alpine areas are part of the INTERACT network. Data collected at these stations are from different scientific disciplines, e.g. geo-sciences (including the atmosphere and cryosphere), hydrology, biology, ecology, and to some extent anthropology. These data are generated as a result of monitoring activities or short term projects. A survey of data management practices in INTERACT was conducted at the beginning of the project. The main finding is that data management at INTERACT stations is highly heterogeneous. In order to establish a unified view on all the data collected by INTERACT stations and through this show the benefit of INTERACT, interoperability at the discovery metadata and data levels is required. The first step towards this is taken through a Data Management Plan (DMP) which is identifying the general principles, common standards to apply and data dissemination principles. The DMP for INTERACT is a living document oriented towards international data management frameworks like World Meteorological Organization Information System (utilized by e.g. Global Cryosphere Watch, Global Atmosphere Watch), and aligned with the activities of the International Arctic Science Committee (IASC) and Sustaining Arctic Observing Network (SAON) Arctic Arctic Data Committee (ADC). INTERACT emphasizes long term data preservation (as promoted by ICSU-WDS), community driven best practices (e.g. RDA), and the principles outlined by the ADC, that promote free, ethically open, sustained, and timely access to Arctic data. This approach should provide easy integration with the H2020 Open Research Data Pilot, and ensure data access to a variety of stakeholders (e.g. ESA DUE, GlobPermafrost, etc.). The initial data management effort focuses on discovery metadata, utilizing internationally accepted standards, protocols and vocabularies, ensuring the interoperability with international systems and frameworks, and the preservation of scientific legacy. Datasets will be documented using the Global Change Master Directory/Directory Interchange Format or ISO19115 standards. To provide interoperability at the data level, long term archival of data across different national repositories with long term mandates in self-explaining file formats (e.g. NetCDF, HDF/HDF5) is envisioned eventually. Therefore, our goal is to establish a unified approach to metadata and data generated by stations in the INTERACT network. This will be beneficial for scientific purposes, but also for monitoring activities. The latter is particularly important as Arctic monitoring to a large degree rely on the effort of the scientific community.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-30
    Description: In 1999, the International Permafrost Association (IPA) established the Global Terrestrial Network for Permafrost (GTN-P, gtnp.org). The goal of the network is systematic and long-term documentation of the distribution, variability, and trends of permafrost (an Essential Climate Variable, ECV) based on a global network of field measurements. The two current cryospheric indicators are permafrost temperature and active layer thickness, throughout the Earth’s permafrost regions. The network has been mainly operated by scientist and research institutions and programs. GTN-P developed a Data Management System (gtnpdatabase.org) for the collection, processing (including standardisation), and dissemination of permafrost data and metadata. Recent ground temperature and active layer thickness data are being compiled to provide an update to the current permafrost state. GTN-P is part of the Global Climate Observing System (GCOS) Global Terrestrial Observing System (GTOS). GCOS is a joint undertaking of the World Meteorological Organization (WMO), the Intergovernmental Oceanographic Commission (IOC) of the United Nations Educational Scientific and Cultural Organization (UNESCO), the United Nations Environment Programme (UNEP) and the International Council for Science (ICSU). Permafrost temperature measurements, commonly performed with permanently installed multi-thermistor cables in boreholes, enable a good accuracy of 0.1°C. The logger resolution and measurement frequency, however, varies with the type and the depth of the individual borehole. Due to high geomorphological surface and subground dynamics, the relative vertical position of testing probes can change and bias the depth indications of old boreholes in sensitive areas. Most important quality concerns are measurement accuracy, zero annual amplitude depth, data gaps, incomplete time series, and spatial clustering of boreholes. We developed a methodological approach to filter the data by defined quality rules in order to calculate global to regional weighted averages of permafrost temperature anomalies. In this presentation we aim to give an overview on the systematical data pathway from borehole principal investigators over National Correspondents in GTN-P, followed by data processing algorithms in the GTN-P DMS towards quality checked time series data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-08-12
    Description: Widespread across northern permafrost landscapes, thermokarst ponds and lakes provide vital wildlife habitat and play a key role in biogeochemical processes. Stored in the sediments of these typically shallow and dynamic waterbodies are rich sources of paleoenvironmental information whose potential has not yet been fully exploited, likely because of concerns over stratigraphic preservation and challenges to develop reliable sediment core chronologies. Here, we present an overview of recently-derived informative paleolimnological reconstructions based on multi-parameter analysis of sediment archives from permafrost aquatic basins. We include examples from across the Canadian North, Alaska, and Siberia that illustrate their value for providing insights into temporal patterns of lake inception, catchment erosion, aquatic productivity, hydrological evolution, and landscape disturbances. Although not captured in our survey, emerging research directions focused on carbon accumulation, storage, and balance hold much promise for contributing to global climate change science.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...