GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Records of densely spaced shots along the Sino-US reflection line INDEPTH II at offsets between 70 and 130 km parallel to the main profile provide an image of the crust straddling the Indus-Yarlung suture. The major features are prominent reflections at about 20 km depth beneath and extending out to about 20–30 km north and south of the surface exposure of the suture, and north-dipping reflectors north of the suture. Various interpretations for the reflections are possible. (i) They represent a decollement, possibly of the Gangdise thrust system. In this scenario, the surface expression of the Gangdise thrust as mapped in eastern south Tibet is a splay with the decollement continuing southwards and either ending as a blind thrust or ramping up as one of the thrusts within the northernmost Tethyan shelf sequence. (ii) The reflections represent fabrics within gneisses, partly obliterated by intrusions reaching various levels of the crust. The reflection bands may be interpreted in terms of deformation or sedimentary structures belonging to the Indian crust, the accretionary complex, and the basement of the Gangdise belt. The intrusions could be related to the Tethyan leucogranites south of the suture (Rinbung leucogranite), and to the Gangdise magmatic arc to the north of the suture. (iii) The reflections represent a fortuitous coincidence of different features north and south of the suture. South of the suture, the reflections may record the basement–cover interface of the Indian crust or a thrust system in the Tethyan shelf. North of the suture, they may comprise different levels within the Gangdise belt and its basement. Although it is not possible to discriminate between the suggested scenarios without additional information, the seismic mapping points to the importance of post-collisional (Oligocene–Miocene) tectonics, which reshaped the suture.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 50 (1999), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: We should know the effects of soil use and management on the contents and forms of soil phosphorus (P) and the resulting potential for leaching losses of P to prevent eutrophication of surface water. We determined P test values, amounts of sequentially extracted forms of P, P sorption capacities and degrees of P saturation in 20 differently treated soils and compared these data with leaching losses in lysimeters. One-way analyses of variance indicated that most fractions of P were significantly influenced by soil texture, land use (grassland, arable or fallow or reafforestation), mineral fertilization and intensity of soil management. Generally, sandy soils under grass and given large amounts of P fertilizer contained the most labile P and showed the largest P test values. Fallow and reafforestation led to smallest labile P fractions and relative increases of P extractable by H2SO4 and residual P. Arable soils with organic and mineral P fertilization given to crop rotations had the largest amounts of total P, labile P fractions and P test values. The mean annual concentrations of P in the lysimeter leachates varied from 0 to 0.81 mg l–1 (mean 0.16 mg l–1) and the corresponding leaching losses of P from 〈 0.01 to 3.2 kg ha–1 year–1 (mean 0.3 kg P ha–1 year–1). These two sets of data were correlated and a significant exponential function (R2 = 0.676) described this relation. Different soil textures, land uses and management practices resulted in similar values for P leaching losses as those for the amounts of labile P fractions. Surprisingly, larger rates of mineral P fertilizer did not necessarily result in greater leaching losses. The contents of P extracted by NaHCO3 and acid oxalate and the degrees of P saturation were positively correlated with the concentrations of P in leachates and leaching losses. As the P sorption capacity and degree of P saturation predicted leaching losses of P better than did routinely determined soil P tests, they possibly can be developed as novel P tests that meet the requirements of plant nutrition and of water protection.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...