GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Science Ltd  (2)
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Correct placement of the division septum in Escherichia coli requires the co-ordinated action of three proteins, MinC, MinD and MinE. MinC and MinD interact to form a non-specific division inhibitor that blocks septation at all potential division sites. MinE is able to antagonize MinCD in a topologically sensitive manner, as it restricts MinCD activity to the unwanted division sites at the cell poles. Here, we show that the topological specificity function of MinE residues in a structurally autonomous, trypsin-resistant domain comprising residues 31–88. Nuclear magnetic resonance (NMR) and circular dichroic spectroscopy indicate that this domain includes both α and β secondary structure, while analytical ultracentrifugation reveals that it also contains a region responsible for MinE homodimerization. While trypsin digestion indicates that the anti-MinCD domain of MinE (residues 1–22) does not form a tightly folded structural domain, NMR analysis of a peptide corresponding to MinE1–22 indicates that this region forms a nascent helix in which the peptide rapidly interconverts between disordered (random coil) and α-helical conformations. This suggests that the N-terminal region of MinE may be poised to adopt an α-helical conformation when it interacts with the target of its anti-MinCD activity, presumably MinD.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Division site selection in Escherichia coli requires that the MinD protein interact with itself and with MinC and MinE. MinD is a member of the NifH-ArsA-Par-MinD subgroup of ATPases. The MinE–MinD interaction results in activation of MinD ATPase activity in the presence of membrane vesicles. The sites within MinD responsible for its interaction with MinC and MinE were studied by site-directed mutagenesis and yeast two-hybrid analysis, guided by the known three-dimensional structure of MinD proteins. This provided evidence that MinC and MinE bind to overlapping sites on the MinD surface. The results also suggested that MinE and the invariant Lys11 residue in the ATPase P-loop of MinD compete for binding to a common site within the MinD structure, thereby providing a plausible structural basis for the ability of MinE to activate the ATPase activity of MinD.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...