GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: It is widely believed that the initial degradation of proteins contained in grazed forage is mediated by rumen micro-organisms, but the authors’ recent work suggests that the plant cells themselves contribute to their own demise. In the present study the responses of Lolium perenne leaves to the rumen environment were investigated by using an in vitro system which simulates the main stresses of the rumen but from which rumen micro-organisms were excluded. Degradation of leaf protein and the accumulation of amino acids in tissue and bathing medium occurred over a time-scale that is relevant to rumen function, and in a near 1 : 1 ratio. Significant loss of nuclear material was observed after 6 h incubation and chloroplasts became morphologically more spherical as the incubation progressed. In situ localization suggested that ribulose 1,5 bisphosphate carboxylase/oxygenase was broken down within chloroplasts which from cytology were judged to be intact. We conclude from these data that plant metabolism may play a significant role in breaking down plant proteins within relatively intact organelles in the rumen. The determinations of chlorophyll content and cell viability revealed that the plant processes occurring in the simulated rumen were similar but not identical to those of natural senescence.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Treatment with supplementary UV-B resulted in decreases in transcripts of the photosynthetic genes Lhcb and psbA and concomitant increase in transcripts of two pathogen-related genes, PR-1 and PDF1·2, in Arabidopsis thaliana. UV-B exposure caused increases in jasmonic acid (JA) levels and ethylene production. UV-B treatment of jar1 and etr1-1 mutants, which are insensitive to JA and ethylene, respectively, showed that the increase in PR-1 transcripts was dependent on ethylene and PDF1·2 transcripts on both JA and ethylene. In contrast, the down-regulation of photosynthetic transcripts was independent of both compounds. Previous studies have indicated a role for reactive oxygen species (ROS) in the UV-B-induced down-regulation of the photosynthetic genes and up-regulation of PR-1 genes. Here we have shown that ROS are also required for the UV-B-induced up-regulation of PDF1·2 genes. The results indicate that the effects of UV-B on the three sets of genes are mediated through three distinct signal transduction pathways which are similar, but not identical, to pathways initiated in response to pathogen infection. In addition, the increased sensitivity of both jar1 and etr1-1 mutants to UV-B radiation, as compared with wild-type plants, indicated that intact JA and ethylene signal pathways are required for defence against UV-B damage.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Supplementary UV-B was shown to lead to a decrease in transcripts encoding the photosynthetic genes Lhcb and psbA and a concomitant increase in transcripts encoding three acid-type pathogenesis-related proteins, PR-1, PR-2 and PR-5, in Arabidopsis thaliana. UV-B radiation has been reported to lead to the generation of reactive oxygen species (ROS). Here we report that ROS are required for UV-B-induced down-regulation of the photosynthetic genes and up-regulation of PR genes, as the addition of antioxidants before UV-B treatment resulted in a marked reduction in the effect of UV-B on both sets of genes. Rises in ROS are frequently accompanied by increases in salicylic acid (SA) accumulation. UV-B treatment of transgenic NahG Arabidopsis plants, which are unable to accumulate SA, showed that the increase in PR transcripts, but not the decrease in photosynthetic transcripts, was dependent on the increase in SA. In addition, a 3 d exposure to UV-B radiation resulted in a 7-fold increase in SA levels. Oxidant treatment of NahG plants indicated that ROS could not up-regulate PR genes in the absence of SA accumulation; however, the down-regulation of photosynthetic transcripts was unchanged from that in wild-type plants. The results indicate that the effects of UV-B on the two sets of genes are mediated through two distinct signal tranduction pathways. One pathway is ROS-dependent but SA-independent and mediates the down-regulation of photosynthetic genes. The other is SA- and ROS-dependent and mediates the up-regulation of the acidic-type PR genes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...