GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 26 (2003), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Stand density reductions have been proposed as a method by which old-growth ponderosa pine (Pinus ponderosa) forests of North America can be converted back to pre-1900 conditions, thereby reducing the danger of catastrophic forest fires and insect attacks while increasing the productivity of the remaining old-growth individuals. However, the duration of productivity response of individual trees and the physiological mechanisms underlying such a response remain speculative issues, particularly in old trees. Tree-ring measurements of carbon isotope ratios (δ13C) and basal area increment (BAI) were used to assess the response of intrinsic water-use efficiency (the ratio of photosynthesis, A to stomatal conductance, g) and growth of individual〉 250-year-old-ponderosa pine trees to stand density reductions. It was hypothesized that reductions in stand density would increase soil moisture availability, thus decreasing canopy A/g and increasing carbon isotope discrimination (Δ). Cellulose-δ13C of annual tree rings, soil water availability (estimated from pre-dawn leaf water potential), photosynthetic capacity, stem basal growth and xylem anatomy were measured in individual trees within three pairs of thinned and un-thinned stands. The thinned stands were treated 7 to 15 years prior to measurement. The values of δ13C and BAI were assessed for 20 consecutive years overlapping the date of thinning in a single intensively studied stand, and was measured for 3 years on either side of the date of thinning for the two other stands to assess the generality of the response.After thinning, Δ increased by 0.89‰ (± 0.15‰). The trees in the un-thinned stands showed no change in Δ (0.00‰ ± 0.04‰). In the intensively studied trees, significant differences were expressed in the first growing season after the thinning took place but it took 6 years before the full 0.89‰ difference was observed. BAI doubled or tripled after disturbance, depending on the stand, and the increased BAI lasted up to 15 years after thinning. In the intensively studied trees, the BAI response did not begin until 3 years after the Δ response, peaked 1 year after the Δ peak, and then BAI and Δ oscillated in unison. The lag between BAI and Δ was not due to slow changes in anatomical properties of the sapwood, because tracheid dimensions and sapwood-specific conductivity remained unchanged after disturbance. The Δ response of thinned trees indicated that A/g decreased after thinning. Photosynthetic capacity, as indexed by foliar nitrogen ([N]) and by the relationship between photosynthesis and internal CO2 (A–Ci curves), was unchanged by thinning, confirming our suspicion that the decline in A/g was due to a relatively greater increase in g in comparison with A. Model estimates agreed with this conclusion, predicting that g increased by nearly 25% after thinning relative to a 15% increase in A. Pre-dawn leaf water potential averaged 0.11 MPa (± 0.03 MPa) less negative for the thinned compared with the un-thinned trees in all stands, and was strongly correlated with Δ post-thinning (R2 = 0.91). There was a strong relationship between BAI and modelled A, suggesting that changes in water availability and g have a significant effect on carbon assimilation and growth of these old trees. These results confirm that stand density reductions result in increased growth of individual trees via increased stomatal conductance. Furthermore, they show that a physiological response to stand density reductions can last for up to 15 years in old ponderosa pines if stand leaf area is not fully re-established.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-18
    Description: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that resists current treatments. To test epigenetic therapy against this cancer, we used the DNA demethylating drug 5-aza-2′-deoxycytidine (DAC) in an aggressive mouse model of stromal rich PDAC (KPC-Brca1 mice). In untreated tumors, we found globally decreased 5-methyl-cytosine (5-mC) in malignant epithelial cells and in cancer-associated myofibroblasts (CAF), along with increased amounts of 5-hydroxymethyl-cytosine (5-HmC) in CAFs, in progression from pancreatic intraepithelial neoplasia to PDAC. DAC further reduced DNA methylation and slowed PDAC progression, markedly extending survival in an early-treatment protocol and significantly though transiently inhibiting tumor growth when initiated later, without adverse side effects. Escaping tumors contained areas of sarcomatoid transformation with disappearance of CAFs. Mixing-allografting experiments and proliferation indices showed that DAC efficacy was due to inhibition of both the malignant epithelial cells and the CAFs. Expression profiling and immunohistochemistry highlighted DAC induction of STAT1 in the tumors, and DAC plus IFN-γ produced an additive antiproliferative effect on PDAC cells. DAC induced strong expression of the testis antigen deleted in azoospermia-like (DAZL) in CAFs. These data show that DAC is effective against PDAC in vivo and provide a rationale for future studies combining hypomethylating agents with cytokines and immunotherapy. Cancer Res; 73(2); 885–96. ©2012 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-02
    Description: Purpose: Active surveillance is used to manage low-risk prostate cancer. Both PCA3 and TMPRSS2:ERG are promising biomarkers that may be associated with aggressive disease. This study examines the correlation of these biomarkers with higher cancer volume and grade determined at the time of biopsy in an active surveillance cohort. Experimental Design: Urine was collected after digital rectal examination prospectively as part of the multi-institutional Canary Prostate Active Surveillance Study (PASS). PCA3 and TMPRSS2:ERG levels were analyzed in urine collected at study entry. Biomarker scores were correlated to clinical and pathologic variables. Results: In 387 men, both PCA3 and TMPRSS2:ERG scores were significantly associated with higher volume disease. For a negative repeat biopsy, and 1% to 10%, 11% to 33%, 34% or more positive cores, median PCA3, and TMPRSS2:ERG scores increased incrementally ( P 〈 0.005). Both PCA3 and TMPRSS2:ERG scores were also significantly associated with the presence of high-grade disease. For a negative repeat biopsy, Gleason 6 and Gleason ≥7 cancers, the median PCA3, and TMPRSS2:ERG scores also increased incrementally ( P = 0.02 and P = 0.001, respectively). Using the marker scores as continuous variables, the ORs for a biopsy in which cancer was detected versus a negative repeat biopsy (ref) on modeling was 1.41 (95% CI: 1.07–1.85), P = 0.01 for PCA3 and 1.28 (95% CI: 1.10–1.49), P = 0.001 for TMPRSS2:ERG. Conclusions: For men on active surveillance, both PCA3 and TMPRSS2:ERG seem to stratify the risk of having aggressive cancer as defined by tumor volume or Gleason score. Clin Cancer Res; 19(9); 2442–50. ©2013 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...