GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-13
    Description: Short-term pronounced increases of the ambient dose equivalent rate, due to rainfall are a well-known phenomenon. Increases in the same order of magnitude or even below may also be caused by a nuclear or radiological event, i.e. by artificial radiation. Hence, it is important to be able to identify natural rain events in dosimetric early warning networks and to distinguish them from radiological events. Novel spectrometric systems based on scintillators may be used to differentiate between the two scenarios, because the measured gamma spectra provide significant nuclide-specific information. This paper describes three simple, automatic methods to check whether an ##IMG## [http://ej.iop.org/icons/Entities/dotH.gif] {dot H} *(10) increase is caused by a rain event or by artificial radiation. These methods were applied to measurements of three spectrometric systems based on CeBr
    Electronic ISSN: 1748-0221
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-19
    Description: To detect radiological incidents, all members of the European Union have installed nationwide radiological early warning networks. Most of the installed detector systems supply only dosimetric information. Novel spectrometry systems are considered to be good candidates for a new detector generation for environmental radiation monitoring because they will supply both nuclide-specific information and ambient dose equivalent rate values. Four different detector types were chosen and compared with each other (LaBr 3 , CeBr 3 , SrI 2 scintillation detectors, and CdZnTe, a semiconductor detector). As a first step, the inherent background of these detectors was measured in the low background underground laboratory UDO II of PTB. As a second step, the relative detection sensitivity between the various detectors was determined at different energies. Finally, the detectors were exposed to a 4π-radiation field of radon progeny in PTB's radon chamber. The obtaine...
    Electronic ISSN: 1748-0221
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The nicotinic acetylcholine receptor (AChR) exhibits at least four different conformational states varying in affinity for agonists such as acetylcholine (ACh). Photoaffinity labeling has been previously used to elucidate the topography of the AChR. However, to date, the photosensitive probes used to explore the cholinergic binding site photolabeled only closed or desensitized states of the receptor. To identify the structural modifications occurring at the ACh binding site on allosteric transition associated with receptor activation, we have investigated novel photoactivatable 4-diazocyclohexa-2,5-dienone derivatives as putative cholinergic agonists. Such compounds are fairly stable in the dark and generate highly reactive carbenic species on irradiation. In binding experiments using AChRs from Torpedo marmorata, these ligands had affinities for the ACh binding site in the micromolar range and did not interact with the noncompetitive blocker site (greater than millimolar affinity). Irreversible photoinactivation of ACh binding sites was obtained with the ligand 1b (up to 42% at 500 µM) in a protectable manner. In patch-clamp studies, 1b was shown to be a functional agonist of peripheral AChR in TE 671 cells, with the interesting property of exhibiting no or very little desensitization even at high concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...