GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: U–Th–Pb analyses of zircons from six granites and one metasediment collected in the accretionary Central belt of Taimyr, Arctic Siberia, demonstrate that Neoproterozoic (c. 900 Ma) granites intrude late Mesoproterozoic/early Neoproterozoic amphibolite facies metamorphic rocks. This is the first time in the Mamont–Shrenk region that Neoproterozoic ages have been recognized for these lithologies, previously thought to be Archaean/Palaeoproterozoic in age. The Mamont–Shrenk Terrane (MST) represents a Grenvillian age (micro?) continent intercalated with younger Neoproterozoic ophiolites during thrusting and accreted to the northern margin of the Siberian craton sometime before the late Vendian. Basement to the MST may have been derived from the Grenvillian belt of east Greenland. Viable tectonic reconstructions must allow for an active margin along northern Siberia (modern day coordinates) in the middle Neoproterozoic.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Evidence is presented here from the northern Scandinavian Caledonides for development of an extensional basin of Ashgill to Mid Llandovery age along the Baltoscandian margin immediately prior to Baltica–Laurentia collision. U/Pb multigrain and ion microprobe zircon dating of plagiogranites in the Halti Igneous Complex complement previous baddeleyite and zircon dating of a dolerite dyke, and zircon dating of anatectic granite; they demonstrate that this dunite, troctolite, gabbro, sheeted-dyke complex ranges in age from c. 445 to 435 Ma. The dolerite dykes intruded and melted arkoses of inferred Neoproterozoic age. This evidence, taken together with previous documentation of ophiolites (Solund–Stavfjord), ophiolite-like associations (Sulitjelma Igneous Complex) and several other mafic suites (e.g. Råna, Artfjället) of Ashgill to Llandovery age further south in the northern Scandinavian Caledonides, implies that Scandian collisional orogeny along this nearly 2000-km-long mountain belt was immediately preceeded by development of short-lived marginal basins. The latter developed during the final closure of the Iapetus Ocean and are inferred to be of back-arc origin, some (perhaps all) related to E-dipping subduction. Collision of the continents at c. 435 Ma is inferred to have induced a flip in subduction polarity, leading to underthrusting of Laurentia by Baltica.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-29
    Description: The recent discovery of ultrahigh-pressure (UHP) mineral parageneses in the far-transported (greater than 400 km) Seve Nappe Complex of the Swedish Caledonides sheds new light on the subduction system that dominated the contracting Baltoscandian margin of continental Baltica during the Ordovician and culminated in collision with Laurentia in the Silurian to Early Devonian. High-grade metamorphism of this Neoproterozoic to Cambrian rifted, extended, dike-intruded outer-margin assemblage started in the Early Ordovician and may have continued, perhaps episodically, until collision of the continents at the end of this period. The recent discovery of UHP kyanite eclogite in northern Jämtland (west-central Sweden) yields evidence of metamorphism at depths of 100 km. Although UHP rocks are only locally preserved from retrogression during the long-distance transport onto the Baltoscandian platform, these high-pressure parageneses indicate that deep subduction played an important role in the tectonothermal history of the complex. Based on existing isotopic age data, this UHP metamorphism occurred in the Late Ordovician, shortly before, or during, the initial collision between the continents (Scandian orogeny). In some central parts of the complex, migmatization and hot extrusion occurred in the Early Silurian, giving way to thrust emplacement across the Baltoscandian foreland basin and platform that continued into the Early Devonian. Identification of HP/UHP metamorphism at different levels within the Scandian allochthons, definition of their pressure-temperature-time paths, and recognition of their vast transport distances are essential for an understanding of the deeper structural levels of the orogen in the hinterland (e.g., the Western Gneiss Region), where the attenuated units were reworked together during the Early Devonian.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...