GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 8 (2002), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: There is scope for land-use changes to increase or decrease CO2 concentrations in the atmosphere over the next century. Here we make simple but robust calculations of the maximum impact of such changes. Historical land-use changes (mostly deforestation) and fossil fuel emissions have caused an increase in atmospheric concentration of CO2 of 90 ppm between the pre-industrial era and year 2000. The projected range of CO2 concentrations in 2100, under a range of emissions scenarios developed for the IPCC, is 170–600 ppm above 2000 levels. This range is mostly due to different assumptions regarding fossil fuel emissions. If all of the carbon so far released by land-use changes could be restored to the terrestrial biosphere, atmospheric CO2 concentration at the end of the century would be about 40–70 ppm less than it would be if no such intervention had occurred. Conversely, complete global deforestation over the same time frame would increase atmospheric concentrations by about 130–290 ppm. These are extreme assumptions; the maximum feasible reforestation and afforestation activities over the next 50 years would result in a reduction in CO2 concentration of about 15–30 ppm by the end of the century. Thus the time course of fossil fuel emissions will be the major factor in determining atmospheric CO2 concentrations for the foreseeable future.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-30
    Description: The Southern Ocean is one of the key regions for global carbon uptake and it is under discussion how physical changes will alter its CO2 balance both directly and indirectly through changes in biological production. Here we analyse a suite of eight RCP8.5 model simulations until 2100 from the MAREMIP and CMIP5 model intercomparison projects on changes in export production and CO2 uptake. We explore how the counter-acting effects of stronger winds ("SAM signal", less stratification) and global warming (more stratification) affect CO2 fluxes in different models and different regions of the Southern Ocean. The models simulate a broad range of responses with no agreement on the dominance of the SAM or global warming signal or on nutrient or light as the dominant drivers for changes in export production. There is agreement on an increase in export production south of 58◦S and on a nutrient-driven decrease of export production in the region 30-44◦S (global warming signal). Based on a box-model, we can identify the most important drivers for the future CO2 uptake in the Southern Ocean where the pure increase of atmospheric CO2 has the largest effect, followed by the enhanced biological production and the larger effect of biological production on CO2 uptake at higher Revelle factor. The enhanced upwelling of carbon-rich deep water, and the effects of warming on the CO2 solubility and faster gas-exchange at higher wind-speeds are less important.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...