GLORIA

GEOMAR Library Ocean Research Information Access

Sie haben 0 gespeicherte Treffer.
Markieren Sie die Treffer und klicken Sie auf "Zur Merkliste hinzufügen", um sie in dieser Liste zu speichern.
feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Blackwell Publishing Ltd  (3)
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    ISSN: 1745-6584
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Energietechnik , Geologie und Paläontologie
    Notizen: Vertical profiles of tetrachloroethene (or perchloroethylene, PCE) and trichloroethene (TCE) were used to validate a diffusion process in a natural aquitard at Dover Air Force Base, Delaware. PCE and TCE distributions in the aquitard underlying an unconfined aquifer were sampled from core tubes obtained at four times over the course of a 35–month field investigation within “test cells” that were isolated from the surrounding ground water by means of grout-sealed steel sheetpile barriers (Mackay et al. 2000). For the final 23 months of this period, boundary conditions at the aquiferJaquitard interface were such that a “back diffusion” of contaminants from the aquitard was induced. Modeling predictions of concentration changes were made on the basis of the earliest coring results and an assumption of sorption-retarded diffusion and using laboratory information about sorption and diffusion characteristics of the media. The predictive modeling was complicated by the fact that “initial” and “final” PCE and TCE distributions in the aquitard were measured at different (albeit proximate) coring locations, such that results reflect spatial variations in aquitard characteristics. This problem was solved by means of an inverse interpretation that involved spatial “translation” of observed profiles on the basis of the laboratory characterizations and assuming a common aquifer-side contaminant history. Predictions indicated substantial change in PCE and TCE concentrations within the upper aquitard (near the aquiferJaquitard interface) and the development of a back-diffusion profile up into the aquifer. Modeling also predicted comparatively minor profile changes in the deeper aquitard, and especially in the deep layer where sorption was strongest. All of these predicted effects were observed in the coring results. Although not exact, the agreement between predictions and observations was sufficiently good to justify the basic tenets of the diffusion model and to support a conclusion that major processes of advection and Jor transformation were unimportant within the 35-month time scale of this work.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 671 (1992), S. 0 
    ISSN: 1749-6632
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Allgemeine Naturwissenschaft
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Ground water monitoring & remediation 18 (1998), S. 0 
    ISSN: 1745-6592
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Energietechnik , Geologie und Paläontologie
    Notizen: The low bioavailability of hydrophobic organic compounds (HOCs) is one of the key sources of uncertainty in the implementation of in situ bioremediation. Bioavailability of HOCs in the subsurface is affected by sorption/desorption processes in two important ways. First, sorption causes high organic concentrations in microporous regions and impermeable zones to which bacterial access is obstructed. Second, because desorption and immobile zone diffusion must occur before biodegradation can proceed, the overall rate of bioremediation can be limited or even controlled by these mass transfer processes, not by the activity of the degrading microorganisms. Rate models that couple sorption/desorption—related mass transfer processes and biodegradation have been successfully applied to laboratory results and are beginning to offer some insight into the problem. Specifically, the influence of sorption on biodegradation is quantified here by defining a bioavailability factor, Bf. However, many questions remain and predictive modeling is elusive, especially in the context of complicated heterogeneous natural systems. Challenges facing environmental engineers are to develop a better understanding of these processes at both laboratory and field scales and ultimately to use such understanding toward the development of more effective and economical remediation technologies.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...