GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (1)
  • Springer  (1)
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @island arc 1 (1992), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The Late Oligocene-Early Miocene Nabae Sub-belt of the Shimanto Accretionary Prism was created coevally (ca 25-15 Ma) with the opening of the Shikoku back-arc basin, located to the south of the southwest Japan convergent margin. The detailed geology of the sub-belt has been controversial and the interaction of the Shimanto accretionary prism and the opening of the Shikoku Basin has been ambiguous. New structural analysis of the sub-belt has led to a new perception of its structural framework and has significant bearing on the interpretation of the Neogene tectonics of southwest Japan.The sub-belt is divided into three units: the Nabae Complex; the Shijujiyama Formation; and the Maruyama Intrusive Suite. The Nabae Complex comprises coherent units and mélange, all of which show polyphase deformation. The first phase of deformation appears to have involved landward vergent thrusting of coherent units over the mélange terrane. The second phase of deformation involved continued landward vergent shortening. The Shijujiyama Formation, composed mainly of mafic volcanics and massive sandstone, is interpreted as a slope basin deposited upon the Nabae Complex during the second phase of deformation. The youngest deformational pulse involved regional flexing and accompanying pervasive faulting. During this event, mafic rocks of the Maruyama Intrusive Suite intruded the sub-belt. Fossil evidence in the Nabae Complex and radiometric dates on the intrusive rocks indicate that this tectonic scheme was imprinted upon the sub-belt between ∼23 and ∼14 Ma.The timing of accretion and deformation of the sub-belt coincides with the opening of the Shikoku Basin; hence, subduction and spreading operated simultaneously. Accretion of the Nabae Sub-belt was anomalous, involving landward vergent thrusting, magmatism in newly accreted strata and regional flexing. It is proposed that this complex and anomalous structural history is largely related to the subduction of the active Shikoku Basin spreading ridge and associated seamounts.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 121 (1995), S. 171-184 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Nd isotopic analyses of whole-rock samples from the older portion of the Carolina terrane, one of the largest terranes in the Appalachian orogen, demonstrate that part of this terrane is composed of juvenile, mantle-derived crust. These data suggest that the terrane may not have originally been built upon old, evolved basement material but rather may have been built upon oceanic crust. A recent study by other workers demonstrates a more crustally evolved Nd isotopic signature for younger components of the Carolina terrane. These data may indicate that the terrane interacted with evolved crust at a later time, possibly by amalgamation with a more evolved crustal fragment before final accretion to Laurentia, rather than indicating a primary old basement. A juvenile nature for the older portion of the terrane contrasts with models that suggest it is an evolved crustal fragment that formed in a continental margin setting — a scenario proposed to explain the high proportion of felsic volcanic rocks within the terrane. It is herein suggested that Carolina is a chemically evolved but isotopically juvenile crustal fragment, because it remained in an oceanic setting for an unusually long time. In this regard the Carolina terrane is similar to some of the large accreted terranes in the Canadian Cordillera, such as Wrangellia and Alexander. The presence of juvenile crust in the Carolina terrane documents that at least part of the southern Appalachian orogen is not composed solely of reactivated pre-existing continental crust. The importance of this part of the orogen in terms of the volume of juvenile Phanerozoic crustal material in North America may be larger than previously thought. However, until additional major Appalachian terranes have been isotopically characterized the volume of juvenile crust in the whole orogen remains unknown. The isotopic make-up of a terrane can be an important aspect of terrane analysis as different terranes may have significantly different isotopic compositions, while even widespread pieces of a single terrane should have very similar isotopic characteristics. The Nd isotopic data for the Carolina terrane form the beginning of an isotope database for terranes in the southern Appalachians.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...