GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GSA (Geological Society of America)  (3)
  • GSL (Geological Society of London)  (2)
  • Blackwell Publishing Ltd  (1)
Document type
Publisher
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 116 (1994), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We present the computational concept and first results of an automated 2-D ray-tracing algorithm which combines the standard ray method with the method of edge waves and paraxial ray tracing. Reliable ray synthetic seismograms are obtained for subsurface structures of high complexity. Both diffracted and multiple diffracted arrivals are automatically computed, complementing all types of primary arrivals (reflected, multiple reflected, converted waves, etc.) where geometric shadow zones are caused by edges (inhomogeneities) in the subsurface model. The method of computation can be summarized as follows: (1) during standard ray tracing, properties of central and paraxial rays are computed for a set of neighbouring rays. (2) Diffraction points (edges) are identified by comparing the amplitude and traveltime differences of neighbouring rays with the corresponding values of their paraxial approximation. (3) Detected edges are used as source points for diffracted rays. (4) Repetition of (1)-(3) for diffracted rays allows computation of multiple diffractions (‘diffracted diffractions’). (5) The amplitude decay of diffracted arrivals is computed according to the theory of edge waves. Its critical variables are expressed in terms of second-order paraxial traveltimes. The method is demonstrated for a simple and complex synthetic model and a real data complex model.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-24
    Description: Methane seepage at south Hydrate Ridge (offshore Oregon, United States), one of the best-studied examples of gas venting through gas hydrates, is the seafloor expression of a vigorous fluid flow system at depth. The seeps host chemosynthetic ecosystems and release significant amounts of carbon into the ocean. With new three-dimensional seismic data, we image strata and structures beneath the ridge in unprecedented detail to determine the geological processes controlling the style of focused fluid flow. Numerical fluid flow simulations reveal the influence of free gas within a stratigraphic unit known as Horizon A, beneath the base of gas hydrate stability (BGHS). Free gas within Horizon A increases the total mobility of the composite water-gas fluid, resulting in high fluid flux that accumulates at the intersection between Horizon A and the BGHS. This intersection controls the development of fluid overpressure at the BGHS, and together with a well-defined network of faults, reveals the link between the gas hydrate system at depth and methane seepage at the surface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-24
    Description: The upward migration of gas through marine sediments typically manifests itself as gas chimneys or pipes in seismic images and can lead to the formation of cold seeps. Gas seepage is often linked to morphological features like seabed domes, pockmarks, and carbonate build-ups. In this context, sediment doming is discussed to be a precursor of pockmark formation. Here, we present parametric echosounder, sidescan sonar, and two-dimensional seismic data from Opouawe Bank, offshore New Zealand, providing field evidence for sediment doming. Geomechanical quantification of the stresses required for doming show that the calculated gas column heights are geologically feasible and consistent with the observed geophysical data. The progression from channeled gas flow to gas trapping results in overpressure build-up in the shallow sediment. Our results suggest that by breaching of domed seafloor sediments a new seep site can develop, but contrary to ongoing discussion this does not necessarily lead to the formation of pockmarks.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-17
    Description: The regional distribution of mounds, associated bottom-simulating reflectors (BSRs) and submarine landslides of the Pacific margin of Nicaragua suggests a genetic relationship between them. In the landslide-dominated parts of the margin, mud mounds occur in groups upslope behind the scarps and aligned parallel to the headwall. The morphotectonic features associated with the slides suggest that the slope failure could be triggered by slope oversteepening on the trailing flank of subducted seamounts. Geometric analysis of the faults triggering and controlling the mud mounds and associated BSRs also indicates that they were caused by collapses of the uplifted sea floor. Thus we propose a simple conceptual genetic model for the occurrences of the submarine landslides, surrounding mud mounds and associated BSRs in the area. Seamount subduction created locally higher fluid overpressure in the décollement. The uplift and fracturing of the margin wedge above the subducting seamount opened pathways for the overpressured fluid to escape, leading to the formation of numerous mud mounds on the sea floor and the BSR in the subsurface. The higher fluid supply locally reduced the shear strength of the sediments and facilitated failure of these sediments as landslides on the oversteepened slope caused by the subduction of the seamount.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-17
    Description: The southern Porcupine Basin is characterized by axial stretching factors that are greater than six and typical of rifted margins. As such, the basin can be regarded as a natural laboratory to investigate the evolution and symmetry of rifting leading towards continental separation and breakup. A bright reflection (here named P) cuts down to the west from the base of the sedimentary section, is overlain by small fault blocks and appears to represent a detachment fault. P may in part follow the top of partially serpentinized mantle: this interpretation is consistent with gravity modelling, and with numerical models of crustal embrittlement and mantle serpentinization during extension. Furthermore, P closely resembles the S reflection west of Iberia, where such serpentinites are well documented. Although overall the basin remains symmetrical, the consistent westward structural dip of the detachment implies that, at high stretching factors, extension became asymmetric. Farther south, the ‘Porcupine Median High’, appearing lens-shaped in cross-section, overlies the tilted fault blocks and is onlapped by postrift sediment. Despite no evidence for synrift magmatism, this high has previously been interpreted as a basaltic structure. However, it develops above the line of intersection of the crust–mantle boundary with the P detachment, and hence may be related to the spatial limit of serpentinization. The median high may represent a serpentinite mud volcano or diapir; we suggest that such structures produce the serpentinite breccias found within the rifted continent–ocean transition of nonvolcanic margins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: In 1964, the Alaska margin ruptured in a giant Mw 9.2 megathrust earthquake, the second largest during worldwide instrumental recording. The coseismic slip and aftershock region offshore Kodiak Island was surveyed in 1977–1981 to understand the region’s tectonics. We re-processed multichannel seismic (MCS) field data using current standard Kirchhoff depth migration and/or MCS traveltime tomography. Additional surveys in 1994 added P-wave velocity structure from wide-angle seismic lines and multibeam bathymetry. Published regional gravity, backscatter, and earthquake compilations also became available at this time. Beneath the trench, rough oceanic crust is covered by ~3–5-km-thick sediment. Sediment on the subducting plate modulates the plate interface relief. The imbricate thrust faults of the accreted prism have a complex P-wave velocity structure. Landward, an accelerated increase in P-wave velocities is marked by a backstop splay fault zone (BSFZ) that marks a transition from the prism to the higher rigidity rock beneath the middle and upper slope. Structures associated with this feature may indicate fluid flow. Farther upslope, another fault extends 〉100 km along strike across the middle slope. Erosion from subducting seamounts leaves embayments in the frontal prism. Plate interface roughness varies along the subduction zone. Beneath the lower and middle slope, 2.5D plate interface images show modest relief, whereas the oceanic basement image is rougher. The 1964 earthquake slip maximum coincides with the leading and/or landward flank of a subducting seamount and the BSFZ. The BSFZ is a potentially active structure and should be considered in tsunami hazard assessments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...