GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (1)
  • DFG-Senatskommission für Ozeanographie  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 116 (1994), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We present the computational concept and first results of an automated 2-D ray-tracing algorithm which combines the standard ray method with the method of edge waves and paraxial ray tracing. Reliable ray synthetic seismograms are obtained for subsurface structures of high complexity. Both diffracted and multiple diffracted arrivals are automatically computed, complementing all types of primary arrivals (reflected, multiple reflected, converted waves, etc.) where geometric shadow zones are caused by edges (inhomogeneities) in the subsurface model. The method of computation can be summarized as follows: (1) during standard ray tracing, properties of central and paraxial rays are computed for a set of neighbouring rays. (2) Diffraction points (edges) are identified by comparing the amplitude and traveltime differences of neighbouring rays with the corresponding values of their paraxial approximation. (3) Detected edges are used as source points for diffracted rays. (4) Repetition of (1)-(3) for diffracted rays allows computation of multiple diffractions (‘diffracted diffractions’). (5) The amplitude decay of diffracted arrivals is computed according to the theory of edge waves. Its critical variables are expressed in terms of second-order paraxial traveltimes. The method is demonstrated for a simple and complex synthetic model and a real data complex model.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-24
    Description: Summary The origin of the Ionian Sea lithosphere and the deep structure of its margins remain a little investigated part of the Mediterranean Sea. To shed light on the plate tectonic setting in this central part of southern Europe, R/V METEOR cruise M111 set out to acquire deep penetrating seismic data in the Ionian Sea. M111 formed the core of an amphibious investigation covering the Ionian Sea and island of Sicily. A total of 153 OBS/OBH deployments using French and German instruments were successfully carried out, in addition to 12 land stations installed on Sicily, which recorded the offshore air gun shots. The aim of this onshore-offshore study is to quantify the deep geometry and architecture of the Calabria subduction zone and Ionian Sea lithosphere and to shed light on the nature of the Ionian Sea crust (oceanic crust vs. thinned continental crust). Investigating the structure of the Ionian crust and lithospheric mantle will contribute to unravel the unknown ocean-continent transition and Tethys margin. Analyzing the tectonic activity and active deformation zones is essential for understanding the subduction processes that underlie the neotectonics of the Calabrian subduction zone and earthquake hazard of the Calabria/Sicily region, especially in the vicinity of local decoupling zones.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...