GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (8)
  • Frontiers  (4)
  • Blackwell Publishing Ltd  (3)
  • Universität Göttingen  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geostandards and geoanalytical research 28 (2004), S. 0 
    ISSN: 1751-908X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: This contribution aims to report the reflections we had with the scientific community during two international workshops on reference materials for stable isotopes in Davos (2002) and Nice (2003). After evaluating the isotopic homogeneity of some existing reference materials, based on either certificates, literature data or specific inter-laboratory rounds, we confirm these as primary reference materials or propose new ones relative to which stable isotope compositions should be reported. We propose DSM-3 for Mg, NIST SRM 915a for Ca, L-SVEC for Li and NBS28 for Si. Cadmium does not yet have a well identified delta zero material, although three commercial mono-elemental Cd solutions have yielded the same isotopic composition relative to one another. In order to scale the linearity of any mass spectrometer, some secondary reference materials are also proposed: Cambridge-1 solution for Mg, the “Münster-Cd” and JEPPIM Cd solutions for Cd and the “Big Batch” silicate for Si. The team from Nancy propose to prepare a mixed spike solution for Li isotopes. Well-characterised natural samples such as ocean or continental waters, diatoms, sponges, rocks and minerals are needed to validate the entire analytical procedure, particularly to take into account the effect of sample mineralisation and of chemical manipulations for elemental separation prior to analysis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Palaeomagnetic investigations of two sediment cores recovered from RV Polarstern near the eastern slope of the Yermak Plateau (sites PS 1533 and PS 2212) reveal convincing evidence for four polarity events of the Earth's magnetic field during the last 170 Ka. A comprehensive rock magnetic study of the sediments proved that fine-grained magnetite is the principal carrier of the remanent magnetization. No changes in magneto-mineralogy across the polarity transitions in the sediments investigated were found. Calcareous nannofossil biostratigraphy, AMS-14C (accelerated mass spectrometry) and oxygen isotope data, and 10Be and 230Th stratigraphies yielded age ranges of 24–29 Ka for the Mono Lake event, 34–43 Ka for the Laschamp event, 72–86 Ka for the Norwegian-Greenland Sea event and 118–128 Ka for the Blake event. Two reverse polarity samples at the base of core PS 2212–3 KAL are interpreted as the termination of the Biwa I event (171-181 Ka). the events exhibit full inversion of inclination in both cores. the data suggest that the transition process of the Earth's magnetic field during such polarity events requires some 1 Ka.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1751-908X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A proposal is made to standardise the reporting of Ca isotope data to the δ44Ca/40Ca notation (or δ44Ca/42Ca) and to adopt NIST SRM 915a as the reference standard.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: The assessment of diagenetic overprint on microstructural and geochemical data gained from fossil archives is of fundamental importance for understanding palaeoenvironments. The correct reconstruction of past environmental dynamics is only possible when pristine skeletons are unequivocally distinguished from altered skeletal elements. Our previous studies show (i) that replacement of biogenic carbonate by inorganic calcite occurs via an interface-coupled dissolution–reprecipitation mechanism. (ii) A comprehensive understanding of alteration of the biogenic skeleton is only given when structural changes are assessed on both, the micrometre as well as on the nanometre scale. In the present contribution we investigate experimental hydrothermal alteration of six different modern biogenic carbonate materials to (i) assess their potential for withstanding diagenetic overprint and to (ii) find characteristics for the preservation of their microstructure in the fossil record. Experiments were performed at 175°C with a 100 mM NaCl + 10 mM MgCl2 alteration solution and lasted for up to 35 days. For each type of microstructure we (i) examine the evolution of biogenic carbonate replacement by inorganic calcite, (ii) highlight different stages of inorganic carbonate formation, (iii) explore microstructural changes at different degrees of alteration, and (iv) perform a statistical evaluation of microstructural data to highlight changes in crystallite size between the pristine and the altered skeletons. We find that alteration from biogenic aragonite to inorganic calcite proceeds along pathways where the fluid enters the material. It is fastest in hard tissues with an existing primary porosity and a biopolymer fabric within the skeleton that consists of a network of fibrils. The slowest alteration kinetics occurs when biogenic nacreous aragonite is replaced by inorganic calcite, irrespective of the mode of assembly of nacre tablets. For all investigated biogenic carbonates we distinguish the following intermediate stages of alteration: (i) decomposition of biopolymers and the associated formation of secondary porosity, (ii) homoepitactic overgrowth with preservation of the original phase leading to amalgamation of neighbouring mineral units (i.e. recrystallization by grain growth eliminating grain boundaries), (iii) deletion of the original microstructure, however, at first, under retention of the original mineralogical phase, and (iv) replacement of both, the pristine microstructure and original phase with the newly formed abiogenic product. At the alteration front we find between newly formed calcite and reworked biogenic aragonite the formation of metastable Mg-rich carbonates with a calcite-type structure and compositions ranging from dolomitic to about 80mol % magnesite. This high-Mg calcite seam shifts with the alteration front when the latter is displaced within the unaltered biogenic aragonite. For all investigated biocarbonate hard tissues we observe the destruction of the microstructure first, and, in a second step, the replacement of the original with the newly formed phase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Marine calcareous sediments provide a fundamental basis for paleoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium (DSr) was positively correlated with both carbon dioxide (pCO2) and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. The results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite. The partition coefficient of magnesium (DMg) displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith DMg and temperature was observed but pCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These results give an extended insight into the driving factors that lead to variations in the coccolith Mg / Ca ratio and can be used for Sr / Ca and Mg / Ca paleoproxy calibration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: The discovery that foraminifera are able to use nitrate instead of oxygen as energy source for their metabolism has challenged our understanding of nitrogen cycling in the ocean. It was evident before that only prokaryotes and fungi are able to denitrify. Rate 5 estimates of foraminiferal denitrification were very sparse on a regional scale. Here, we present estimates of benthic foraminiferal denitrification rates from six stations at intermediate water depths in and below the Peruvian oxygen minimum zone (OMZ). Foraminiferal denitrification rates were calculated from abundance and assemblage composition of the total living fauna in both, surface and subsurface sediments, 10 as well as from individual species specific denitrification rates. A comparison with total benthic denitrification rates as inferred by biogeochemical models revealed that benthic foraminifera account for the total denitrification on the shelf between 80 and 250m water depth. They are still important denitrifiers in the centre of the OMZ around 320m (29–56% of the benthic denitrification) but play only a minor role at the lower OMZ 15 boundary and below the OMZ between 465 and 700m (3–7% of total benthic denitrification). Furthermore, foraminiferal denitrification was compared to the total benthic nitrate loss measured during benthic chamber experiments. Foraminiferal denitrification contributes 1 to 50% to the total nitrate loss across a depth transect from 80 to 700 m, respectively. Flux rate estimates ranged from 0.01 to 1.3 mmolm−2 d−1. Fur20 thermore we show that the amount of nitrate stored in living benthic foraminifera (3 to 705 μmolL−1) can be higher by three orders of magnitude as compared to the ambient pore waters in near surface sediments sustaining an important nitrate reservoir in Peruvian OMZ sediments. The substantial contribution of foraminiferal nitrate respiration to total benthic nitrate loss at the Peruvian margin, which is one of the main nitrate sink 25 regions in the world oceans, underpins the importance of previously underestimated role of benthic foraminifera in global biochemical cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: In this study we explore the correlation of I/Ca ratios in three calcitic and one aragonitic foraminiferal species. I/Ca ratios are evaluated as possible proxies for changes in ambient redox conditions across the Peruvian oxygen minimum zone to the ambient oxygen concentrations in the habitat of the foraminiferal species studied. We test cleaning and measurement methods to determine I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone. All species show a positive trend in their I/Ca ratios as a function of higher oxygen concentrations and these trends are all statistically significant except for the aragonitic species Hoeglundina elegans. The most promising species appears to be Uvigerina striata which shows a highly statistically significant correlation between I/Ca ratios and bottom water (BW) oxygenation (I/Ca = 0.032(± 0.004)[O2]BW + 0.29(± 0.03), R2 = 0.61, F = 75, P 〈 0.0001). Although I/Ca ratios in benthic foraminifera might prove to be a valuable proxy for changing redox-conditions the iodine volatility in acidic solutions, the species dependency ofI/Ca–[O2]BW correlations, and the individual variability of single tests severely interfere with the observed I/Ca–[O2]BW relationship.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: In this study we present an initial dataset of Mn/Ca and Fe/Ca ratios in tests of benthic foraminifera from the Peruvian oxygen minimum zone (OMZ) determined with SIMS. These results are a contribution to a better understanding of the proxy potential of these elemental ratios for ambient redox conditions. Foraminiferal tests are often contaminated by diagenetic coatings, like Mn rich carbonate- or Fe and Mn rich (oxyhydr)oxide coatings. Thus, it is substantial to assure that the cleaning protocols are efficient or that spots chosen for microanalyses are free of contaminants. Prior to the determination of the element/Ca ratios, the distributions of several elements (Ca, Mn, Fe, Mg, Ba, Al, Si, P and S) in tests of the shallow infaunal species Uvigerina peregrina and Bolivina spissa were mapped with an electron microprobe (EMP). To visualize the effects of cleaning protocols uncleaned and cleaned specimens were compared. The cleaning protocol included an oxidative cleaning step. An Fe rich phase was found on the inner test surface of uncleaned U. peregrina specimens. This phase was also enriched in Al, Si, P and S. A similar Fe rich phase was found at the inner test surface of B. spissa. Specimens of both species treated with oxidative cleaning show the absence of this phase. Neither in B. spissa nor in U. peregrina were any hints found for diagenetic (oxyhydr)oxide or carbonate coatings. Mn/Ca and Fe/Ca ratios of single specimens of B. spissa from different locations have been determined by secondary ion mass spectrometry (SIMS). Bulk analyses using solution ICP-MS of several samples were compared to the SIMS data. The difference between SIMS analyses and ICP-MS bulk analyses from the same sampling sites was 14.0–134.8 μmol mol−1 for the Fe/Ca and 1.68(±0.41) μmol mol−1 for the Mn/Ca ratios. This is in the same order of magnitude as the variability inside single specimens determined with SIMS at these sampling sites (1σ[Mn/Ca] = 0.35–2.07 μmol mol−1; 1σ[Fe/Ca] = 93.9–188.4 μmol mol−1). The Mn/Ca ratios in the calcite were generally relatively low (2.21–9.93 μmol mol−1) but in the same magnitude and proportional to the surrounding pore waters (1.37–6.67 μmol mol−1). However, the Fe/Ca ratios in B. spissa show a negative correlation to the concentrations in the surrounding pore waters. Lowest foraminiferal Fe/Ca ratios (87.0–101.0 μmol mol−1) were found at 465 m water depth, a location with a strong sharp Fe peak in the pore water next to the sediment surface and respectively, high Fe concentrations in the surrounding pore waters. Previous studies found no living specimens of B. spissa at this location. All these facts hint that the analysed specimens already were dead before the Fe flux started and the sampling site just recently turned anoxic due to fluctuations of the lower boundary of the OMZ near the sampling site (465 m water depth). Summarized Mn/Ca and Fe/Ca ratios are potential proxies for redox conditions, if cleaning protocols are carefully applied. The data presented here may be rated as base for the still pending detailed calibration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Universität Göttingen
    In:  In: Global and regional controls on biogenic sedimentation. I. Reef evolution. Research reports. , ed. by Reitner, J., Neuweiler, F. and Gunkel, F. Göttinger Arbeiten zur Geologie und Paläontologie, Sb 2 . Universität Göttingen, Göttingen, pp. 19-22.
    Publication Date: 2017-02-02
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of 〉230 Pa (〉2300 μatm) and pHNBS values of 〈7.5 are encountered during summer and autumn, average pCO2 values are ~70 Pa (~700 μatm). In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 μatm, pHNBS = 7.7). Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 μatm) prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pHNBS values projected for the end of this century when food supply is sufficient. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values 〉400 Pa (〉4000 μatm). These changes will most likely affect calcification and recruitment, and increase external shell dissolution.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...