GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 21 (2002), S. 0 
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: The deglaciation history of Balsfjord, northern Norway, and post-glacial mass movement events were investigated. Radiocarbon dates indicate that the Balsfjord glacier retreated from the Tromsø–Lyngen moraines about 10.4 14C Ky BP. Between ca. 10.3 14C Ky BP and 9.9 14C Ky BP, deposition of a distinct end moraine–the Skjevelnes moraine–in the central part of Balsfjord occurred. The transition from glacimarine to open marine sedimentary environment took place before 9.6 14C Ky BP. Between ca. 9.5 14C Ky BP and 8.4 14C Ky BP, at least one local and three regional mass movement events occurred. After this period, no gravity flow activity is preserved in the cores. The high frequency of mass movements in the early post-glacial period is presumed to be due to fast sea level changes and/or tectonic activity induced by rapid isostatic uplift.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 23 (2004), S. 0 
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: In many areas of Svalbard, the Neoglacial terminal deposits represent the Holocene glacial maximum. The glaciers began the retreat from their Neoglacial maximum positions around 1900 AD. Based on high resolution acoustic data and sediment cores, sedimentation patterns in four tidewater glacier-influenced inlets of the fjord Isfjorden (Tempelfjorden, Billefjorden, Yoldiabukta and Borebukta), Spitsbergen, were investigated. A model for sedimentation of tidewater glaciers in these High Arctic environments is proposed. Glacigenic deposits occur in proximal and distal basins. The proximal basins comprise morainal ridges and hummocky moraines, bounded by terminal moraines marking the maximum Neoglacial ice extent. The distal basins are characterized by debris lobes and draping stratified glacimarine sediments beyond, and to some extent beneath and above, the lobes. The debris lobe in Tempelfjorden is composed of massive clayey silt with scattered clasts. Distal glacimarine sediments comprise stratified clayey silt with low ice-rafted debris (IRD) content. The average sedimentation rate for the glacimarine sediments in Tempelfjorden is 17 mm/yr for the last ca. 130 years. It is suggested that the stratified sediments in Tempelfjorden are glacimarine varves. The high sedimentation rate and low IRD content are explained by input from rivers, in addition to sedimentation from suspension of glacial meltwater. The debris lobes in Borebukta are composed of massive clayey silt with high clast content. Distal glacimarine sediments in Yoldiabukta comprise clayey silt with high IRD content. The average sedimentation rate for these sediments is 0.6 mm/yr for the last 2300 years.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-23
    Description: EGU2011-4235 The Arctic is undergoing rapid environmental and economic transformations. Recent climate warming, which is simplifying access to oil and gas resources, enabling trans Arctic shipping, and shifting the distribution of harvestable resources, has brought the Arctic Ocean to the top of national and international political agendas. Scientific knowledge of the present status of the Arctic Ocean and the process-based understanding of the mechanics of change are urgently needed to make useful predictions of future conditions throughout the Arctic region. These are required to plan for the consequences of climate change. A step towards improving our capacity to predict future Arctic change was undertaken with the Second International Conference on Arctic Research Planning (ICARP II) meetings in 2005 and 2006, which brought together scientists, policymakers, research managers, Arctic residents, and other stakeholders interested in the future of the Arctic region. The Arctic in Rapid Transition (ART) Initiative developed out of the synthesis of the several resulting ICARP II science plans specific to the marine environment. This process started in October 2008 and has been driven by early career scientists. The ART Initiative is an integrative, international, multi-disciplinary, long-term pan-Arctic network to study changes and feedbacks with respect to physical characteristics and biogeochemical cycles in the Arctic Ocean in a state of rapid transition and its impact on the biological production. The first ART workshop was held in Fairbanks, Alaska, in November 2009 with 58 participants from 9 countries. Workshop discussions and reports were used to develop a science plan that integrates, updates, and develops priorities for Arctic Marine Science over the next decade. The science plan was accepted and approved by the International Arctic Science Committee (IASC) Marine Group, the former Arctic Ocean Science Board. The second ART workshop was held in Winnipeg, Canada, in October 2010 with 20 participants from 7 countries to develop the implementation plan. Our focus within the ART Initiative will be to bridge gaps in knowledge not only across disciplinary boundaries (e.g., biology, geochemistry, geology, meteorology, physical oceanography), but also across geographic (e.g., international boundaries, shelves, margins, and the central Arctic Ocean) and temporal boundaries (e.g., alaeo/geologic records, current process observations, and future modeling studies). This approach of the ART Initiative will provide a means to better understand and predict change, particularly the consequences for biological productivity, and ultimate responses in the Arctic Ocean system. More information about the ART Initiative can be found at http://aosb.arcticportal.org/art.html.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...