GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Blackwell Science Ltd  (2)
  • Blackwell Publishing Ltd  (1)
Document type
  • Articles  (3)
Publisher
Years
Topic
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Type 4 pili produced by the pathogenic Neisseria species constitute primary determinants for the adherence to host tissues. In addition to the major pilin subunit (PilE), neisserial pili contain the variable PilC proteins represented by two variant gene copies in most pathogenic Neisseria isolates. Based upon structural differences in the conserved regions of PilE, two pilus classes can be distinguished in Neisseria meningitidis. For class I pili found in both Neisseria gonorrhoeae and N. meningitidis, PilC proteins have been implicated in pilus assembly, natural transformation competence and adherence to epithelial cells. In this study, we used primers specific for the pilC2 gene of N. gonorrhoeae strain MS11 to amplify, by the polymerase chain reaction, and clone a homologous pilC gene from N. meningitidis strain A1493 which produces class II pili. This gene was sequenced and the deduced amino acid sequence showed 75.4% and 73.8% identity with the gonococcal PilC1 and PilC2, respectively. These values match the identity value of 74.1% calculated for the two N. gonorrhoeae MS11 PilC proteins, indicating a horizontal relationship between the N. gonorrhoeae and N. meningitidispilC genes. We provide evidence that PilC functions in meningococcal class II pilus assembly and adherence. Furthermore, expression of the cloned N. meningitidis pilC gene in a gonococcal pilC1,2 mutant restores pilus assembly, adherence to ME-180 epithelial cells, and transformation competence to the wild-type level. Thus, PilC proteins exhibit indistinguishable functions in the context of class I and class II pili.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Pili confer the initial ability of Neisseria gonorrhoeae to bind to epithelial cells. Pilin (PilE), the major pilus subunit, and a minor protein termed PilC, reportedly essential for pilus biogenesis, undergo intra-strain phase and structural variation. We demonstrate here that at least two different adherence properties are associated with the gonococcal pili: one is specific for erythrocytes, which is virtually unaffected by PilE variation, and another is specific for epithelial cells, and is modulated in response to the variation of PilE. Based on this finding, mutants of a recA - strain were selected that had lost the ability to bind to human cornea epithelial cells (A-) but retained the ability to form pili (P+) and to agglutinate human erythrocytes (H+). The adherence-negative mutants failed to produce detectable levels of PMC1 or PilC2 proteins, representing pilC phase variants generated in the absence of RecA. The A-pilC phase variants were indistinguishable from their A+parents and spontaneous A+ revertants with regard to the amount of PilE produced and its electrophoretic mobility, the degrees of piliation and haemagglutination, and the pilE nucleotide sequence. These data demonstrate a central role for PilC in pilus-mediated adherence of N. gonorrhoeae to human epithelial cells and further indicate that neither PNC1 nor PilC2 is obligatory for the assembly of gonococcal pili.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Porin (PorB), the major outer membrane protein of Neisseria gonorrhoeae, has been implicated in pathogenesis previously. However, the fact that porin deletion mutants are not viable has complicated investigations. Here, we describe a method of manipulating the porin gene site-specifically. N. gonorrhoeae MS11, which harbours the porB1B (P.1B) porin allele, was used to generate mutants carrying deletions in the surface loops 1 and 5. An 11-amino-acid deletion in loop 1 impaired Opa50-dependent invasion into human Chang epithelial cells, whereas loop 5 deletion exhibited no apparent phenotype. In a second approach, the complete gonococcal porB1B was replaced by the porBNla gene of Neisseria lactamica. Such mutants were unable to induce efficient uptake by epithelial cells but induced an enhanced respiratory response in HL60 phagocytic cells. The increased respiratory burst was accompanied by an enhanced phagocytic uptake of the mutant compared with the wild-type strain. Our data extend previous evidence for multiple central functions of PorB in the infection process.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...