GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (2)
  • Blackwell Publishing - STM  (1)
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 10 (1987), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Photon requirements for growth (φg−1) of the diatom Phaeodactylum tricornutum were determined under nutrient-sufficient conditions at two photon flux densities corresponding to light limited and near-saturating conditions for growth. The value of φg−1 based on assimilated carbon was light-dependent and varied from 8.8 to 14.0 mol photon mol C−1 with the minimum value at the lowest photon flux density. These results are lower than might be predicted for microalgal growth based on the Z scheme of photosynthesis. Conversion of these values for carbon fixation to estimates based on oxygen evolution is problematical due to uncertainty over the appropriate assimilatory quotient (Qa= mol O2 mol C−1). Minimum values based on oxygen evolution rates ranged from 6.2 to 7.6 mol photon mol O2−1 using a Qa of 1.41 mol O2 mol C−1 obtained by Myers (1980). These estimates are similar to our previous measurements for photosynthesis and indicate a high efficiency for light energy transforming reactions during growth. The values of (φg−1 obtained in this work indicate a number of inadequacies in our understanding of the energetics of microalgal growth and are inconsistent with our present knowledge of photosynthetic energy coupling in plant cells.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 9 (1986), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Nitrate limited growth of the diatom Phaeodactylum tricornutum in chemostat cultures produced marked changes in biochemical composition and a six-fold reduction in the specific growth rate. This was associated with a reduction in the carbon and chlorophyll a specific light saturated rates, with little effect on light limited photosynthesis. Variations in specific growth rate were quantitatively related to carbon specific net photosynthesis and maximum chlorophyll a specific light saturated rates were positively correlated with cell nitrogen contents. The correlation between nitrogen content and photosynthesis for P. tricornutum and the differential effect of nitrogen supply on the light response curve of photosynthesis is qualitatively and quantitatively similar to published results for terrestrial vascular plants. There was little change in the photon (quantum) yield of photosynthesis which was not significantly different from 0.125mol O2 mol photon-1 the theoretical upper limit based on the Z scheme, even under severe nitrate deficiency. The capacity to maintain a high photon yield under nitrate limitation is discussed in relation to the nitrogen requirements of the stromal and membrane components of the photosynthetic apparatus.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-22
    Description: Optimality principles are often applied in theoretical studies of microalgal ecophysiology to predict changes in allocation of resources to different metabolic pathways, and optimal acclimation is likely to involve changes in the proteome, which typically accounts for 〉 50% of cellular nitrogen (N). We tested the hypothesis that acclimation of the microalga Emiliania huxleyi CCMP 1516 to suboptimal vs supraoptimal light involves large changes in the proteome as cells rebalance the capacities to absorb light, fix CO2, perform biosynthesis and resist photooxidative stress. Emiliania huxleyi was grown in nutrient-replete continuous culture at 30 (LL) and 1000 μmol photons m−2 s−1 (HL), and changes in the proteome were assessed by LC-MS/MS shotgun proteomics. Changes were most evident in proteins involved in the light reactions of photosynthesis; the relative abundance of photosystem I (PSI) and PSII proteins was 70% greater in LL, light-harvesting fucoxanthin–chlorophyll proteins (Lhcfs) were up to 500% greater in LL and photoprotective LI818 proteins were 300% greater in HL. The marked changes in the abundances of Lhcfs and LI818s, together with the limited plasticity in the bulk of the E. huxleyi proteome, probably reflect evolutionary pressures to provide energy to maintain metabolic capabilities in stochastic light environments encountered by this species in nature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...