GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bioscientifica  (1)
Material
Publisher
  • Bioscientifica  (1)
Language
Years
  • 1
    Online Resource
    Online Resource
    Bioscientifica ; 2018
    In:  Journal of Molecular Endocrinology Vol. 61, No. 4 ( 2018-11), p. 153-161
    In: Journal of Molecular Endocrinology, Bioscientifica, Vol. 61, No. 4 ( 2018-11), p. 153-161
    Abstract: Numerous studies have implicated tumor necrosis factor α (TNFα) in the pathogenesis of type 2 diabetes. However, the role of its primary receptor, TNF receptor 1 (TNFR1), in homeostatic regulation of glucose metabolism is still controversial. In addition to TNFα, lymphotoxin α (LTα) binds to and activates TNFR1. Thus, TNFα and LTα together are known as TNF. To delineate the role of TNF signaling in glucose homeostasis, the present study ascertained how TNF signaling deficiency affects major regulatory components of glucose homeostasis. To this end, normal diet-fed male TNFR1-deficient mice (TNFR1 −/− ), TNFα/LTα/LTβ triple-deficient mice (TNF/LT ∆3 ) and their littermate controls were subjected to intraperitoneal glucose tolerance test, insulin tolerance test and oral glucose tolerance test. The present results showed that TNFR1 −/− and TNF/LT ∆3 mice vs their controls had comparable body weight, tolerance to intraperitoneal glucose and sensitivity to insulin. However, their tolerance to oral glucose was significantly increased. Additionally, glucose-induced insulin secretion assessments revealed that TNFR1 or TNF/LT deficiency significantly increased oral but not intraperitoneal glucose-induced insulin secretion. Consistently, qPCR and immunohistochemistry analyses showed that TNFR1 −/− and TNF/LT ∆3 mice vs their controls had significantly increased ileal expression of glucagon-like peptide-1 (GLP-1), one of the primary incretins. Their oral glucose-induced secretion of GLP-1 was also significantly increased. These data collectively suggest that physiological TNF signaling regulates glucose metabolism primarily through effects on GLP-1 expression and secretion and subsequently insulin secretion.
    Type of Medium: Online Resource
    ISSN: 0952-5041 , 1479-6813
    Language: Unknown
    Publisher: Bioscientifica
    Publication Date: 2018
    detail.hit.zdb_id: 1478171-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...