GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    IEEE
    In:  In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Karlsruhe, Germany, 2020. IEEE, Piscataway, NJ, pp. 1-6. ISBN 978-1-7281-6422-9
    Publication Date: 2021-03-25
    Description: In this decade, the amount of (industrial) Internet of Things devices will increase tremendously. Today, there exist no common standards for interconnection, observation, or the monitoring of these devices. In context of the German "Industrie 4.0"strategy the Reference Architectural Model Industry 4.0 (RAMI 4.0) was introduced to connect different aspects of this rapid development. The idea is to let different stakeholders of these products speak and understand the same terminology. In this paper, we present an approach using Digital Twins to prototype different layers along the axis of the RAMI 4.0, by the example of an autonomous ocean observation system developed in the project ARCHES.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: During the research cruise AL547 with RV ALKOR (October 20-30, 2020), a collaborative underwater network of ocean observation systems was deployed in Boknis Eck (SW Baltic Sea, German exclusive economic zone (EEZ)) in the context of the project ARCHES (Autonomous Robotic Networks to Help Modern Societies). This network was realized via a Digital Twin Prototype approach. During that period different scenarios were executed to demonstrate the feasibility of Digital Twins in an extreme environment such as underwater. One of the scenarios showed the collaboration of stage IV Digital Twins with their physical counterparts on the seafloor. This way, we address the research question, whether Digital Twins represent a feasible approach to operate mobile ad hoc networks for ocean and coastal observation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-18
    Description: Recent advances in robotic design, autonomy and sensor integration create solutions for the exploration of deep-sea environments, transferable to the oceans of icy moons. Marine platforms do not yet have the mission autonomy capacity of their space counterparts (e.g., the state of the art Mars Perseverance rover mission), although different levels of autonomous navigation and mapping, as well as sampling, are an extant capability. In this setting their increasingly biomimicked designs may allow access to complex environmental scenarios, with novel, highly-integrated life-detecting, oceanographic and geochemical sensor packages. Here, we lay an outlook for the upcoming advances in deep-sea robotics through synergies with space technologies within three major research areas: biomimetic structure and propulsion (including power storage and generation), artificial intelligence and cooperative networks, and life-detecting instrument design. New morphological and material designs, with miniaturized and more diffuse sensor packages, will advance robotic sensing systems. Artificial intelligence algorithms controlling navigation and communications will allow the further development of the behavioral biomimicking by cooperating networks. Solutions will have to be tested within infrastructural networks of cabled observatories, neutrino telescopes, and off-shore industry sites with agendas and modalities that are beyond the scope of our work, but could draw inspiration on the proposed examples for the operational combination of fixed and mobile platforms.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-02-01
    Description: Innovative robotic technologies are a key to study ocean processes in space and time. The work carried out during the ROBEX-Demonstration Mission on RV Polarstern will test the capability of new and innovative technologies, developed during the HGF Alliance ROBEX, in deep-sea environments. Investigations will include Arctic benthic and pelagic ecosystems strongly influenced by climate change, such as marine arctic sediments hosting gas hydrates and arctic deep-sea benthic communities. Different robotic platforms, including 3 types of crawler, glider, AUV, UAVs and senor systems (like Lab-on-a- Chip and multi-O2-profiler) are described and mission scenarios presented. The use of these new underwater technologies will improve our capabilities to improve our knowledge on the effects of climate change on the Arctic ecosystem and ocean observation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...