GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • University of California Press  (4)
  • Berlin : Technische Universität Berlin  (1)
  • 1
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (47 Seiten, 1,77 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMWi 0324029C , Verbundnummer 01169010 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-05
    Description: The Arctic Ocean is an exceptional environment where hydrosphere, cryosphere, and atmosphere are closely interconnected. Changes in sea-ice extent and thickness affect ocean currents, as well as moisture and heat exchange with the atmosphere. Energy and water fluxes impact the formation and melting of sea ice and snow cover. Here, we present a comprehensive statistical analysis of the stable water isotopes of various hydrological components in the central Arctic obtained during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in 2019–2020, including the understudied Arctic winter. Our dataset comprises >2200 water, snow, and ice samples. Snow had the most depleted and variable isotopic composition, with δ18O (–16.3‰) increasing consistently from surface (–22.5‰) to bottom (–9.7‰) of the snowpack, suggesting that snow metamorphism and wind-induced transport may overprint the original precipitation isotope values. In the Arctic Ocean, isotopes also help to distinguish between different sea-ice types, and whether there is a meteoric contribution. The isotopic composition and salinity of surface seawater indicated relative contributions from different freshwater sources: lower δ18O (approximately –3.0‰) and salinities were observed near the eastern Siberian shelves and towards the center of the Transpolar Drift due to river discharge. Higher δ18O (approximately –1.5‰) and salinities were associated with an Atlantic source when the RV Polarstern crossed the Gakkel Ridge into the Nansen Basin. These changes were driven mainly by the shifts within the Transpolar Drift that carried the Polarstern across the Arctic Ocean. Our isotopic analysis highlights the importance of investigating isotope fractionation effects, for example, during sea-ice formation and melting. A systematic full-year sampling for water isotopes from different components strengthens our understanding of the Arctic water cycle and provides crucial insights into the interaction between atmosphere, sea ice, and ocean and their spatio-temporal variations during MOSAiC.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-26
    Description: Sea ice thickness is a key parameter in the polar climate and ecosystem. Thermodynamic and dynamic processes alter the sea ice thickness. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition provided a unique opportunity to study seasonal sea ice thickness changes of the same sea ice. We analyzed 11 large-scale (∼50 km) airborne electromagnetic sea thickness and surface roughness surveys from October 2019 to September 2020. Data from ice mass balance and position buoys provided additional information. We found that thermodynamic growth and decay dominated the seasonal cycle with a total mean sea ice thickness increase of 1.4 m (October 2019 to June 2020) and decay of 1.2 m (June 2020 to September 2020). Ice dynamics and deformation-related processes, such as thin ice formation in leads and subsequent ridging, broadened the ice thickness distribution and contributed 30% to the increase in mean thickness. These processes caused a 1-month delay between maximum thermodynamic sea ice thickness and maximum mean ice thickness. The airborne EM measurements bridged the scales from local floe-scale measurements to Arctic-wide satellite observations and model grid cells. The spatial differences in mean sea ice thickness between the Central Observatory (〈10 km) of MOSAiC and the Distributed Network (〈50 km) were negligible in fall and only 0.2 m in late winter, but the relative abundance of thin and thick ice varied. One unexpected outcome was the large dynamic thickening in a regime where divergence prevailed on average in the western Nansen Basin in spring. We suggest that the large dynamic thickening was due to the mobile, unconsolidated sea ice pack and periodic, sub-daily motion. We demonstrate that this Lagrangian sea ice thickness data set is well suited for validating the existing redistribution theory in sea ice models. Our comprehensive description of seasonal changes of the sea ice thickness distribution is valuable for interpreting MOSAiC time series across disciplines and can be used as a reference to advance sea ice thickness modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-29
    Description: The Arctic Ocean is an exceptional environment where hydrosphere, cryosphere, and atmosphere are closely interconnected. Changes in sea-ice extent and thickness affect ocean currents, as well as moisture and heat exchange with the atmosphere. Energy and water fluxes impact the formation and melting of sea ice and snow cover. Here, we present a comprehensive statistical analysis of the stable water isotopes of various hydrological components in the central Arctic obtained during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in 2019–2020, including the understudied Arctic winter. Our dataset comprises 〉2200 water, snow, and ice samples. Snow had the most depleted and variable isotopic composition, with d18O (–16.3%) increasing consistently from surface (–22.5%) to bottom (–9.7%) of the snowpack, suggesting that snow metamorphism and wind-induced transport may overprint the original precipitation isotope values. In the Arctic Ocean, isotopes also help to distinguish between different sea-ice types, and whether there is a meteoric contribution. The isotopic composition and salinity of surface seawater indicated relative contributions from different freshwater sources: lower d18O (approximately –3.0%) and salinities were observed near the eastern Siberian shelves and towards the center of the Transpolar Drift due to river discharge. Higher d18O (approximately –1.5%) and salinities were associated with an Atlantic source when the RV Polarstern crossed the Gakkel Ridge into the Nansen Basin. These changes were driven mainly by the shifts within the Transpolar Drift that carried the Polarstern across the Arctic Ocean. Our isotopic analysis highlights the importance of investigating isotope fractionation effects, for example, during sea-ice formation and melting. A systematic full-year sampling for water isotopes from different components strengthens our understanding of the Arctic water cycle and provides crucial insights into the interaction between atmosphere, sea ice, and ocean and their spatio-temporal variations during MOSAiC.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-29
    Description: Repeated transects have become the backbone of spatially distributed ice and snow thickness measurements crucial for understanding of ice mass balance. Here we detail the transects at the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) 2019-2020, which represent the first such measurements collected across an entire season. Compared with similar historical transects, the snow at MOSAiC was thin (mean depths of approximately 0.1-0.3 m), while the sea ice was relatively thick first-year ice (FYI) and second-year ice (SYI). SYI was of two distinct types: relatively thin level ice formed from surfaces with extensive melt pond cover, and relatively thick deformed ice. On level SYI, spatial signatures of refrozen melt ponds remained detectable in January. At the beginning of winter the thinnest ice also had the thinnest snow, with winter growth rates of thin ice (0.33 m month-1 for FYI, 0.24 m month-1 for previously ponded SYI) exceeding that of thick ice (0.2 m month-1). By January, FYI already had a greater modal ice thickness (1.1 m) than previously ponded SYI (0.9 m). By February, modal thickness of all SYI and FYI became indistinguishable at about 1.4 m. The largest modal thicknesses were measured in May at 1.7 m. Transects included deformed ice, where largest volumes of snow accumulated by April. The remaining snow on level ice exhibited typical spatial heterogeneity in the form of snow dunes. Spatial correlation length scales for snow and sea ice ranged from 20 to 40 m or 60 to 90 m, depending on the sampling direction, which suggests that the known anisotropy of snow dunes also manifests in spatial patterns in sea ice thickness. The diverse snow and ice thickness data obtained from the MOSAiC transects represent an invaluable resource for model and remote sensing product development.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...