GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin/Boston :Walter de Gruyter GmbH,
    Keywords: Chemistry, Inorganic. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (1701 pages)
    Edition: 103th ed.
    ISBN: 9783110495850
    Language: German
    Note: Intro -- Vorwort zur 103. Auflage -- Inhaltsverzeichnis -- Einleitung -- Teil A. Grundlagen der Chemie. Der Wasserstoff -- Kapitel I. Element und Verbindung -- Kapitel II. Atom und Molekül -- Kapitel III. Atom- und Molekülion -- Kapitel IV. Das Periodensystem (Teil I) der Elemente -- Kapitel V. Der Atombau -- Kapitel VI. Der Molekülbau. Die chemische Bindung, Teil I -- Kapitel VII. Die Molekülumwandlung. Die chemische Reaktion, Teil II -- Kapitel VIII. Der Wasserstoff und seine Verbindungen -- Teil B. Hauptgruppenelemente -- Kapitel IX. Hauptgruppenelemente (Repräsentative Elemente) -- Kapitel X. Grundlagen der Molekülchemie -- Kapitel XI. Die Gruppe der Edelgase -- Kapitel XII. Die Gruppe der Halogene -- Kapitel XIII. Die Gruppe der Chalkogene -- Kapitel XIV. Die Stickstoffgruppe (Pentele) -- Kapitel XV. Die Kohlenstoffgruppe (»Tetrele«) -- Kapitel XVI. Die Borgruppe (»Triele«) -- Kapitel XVII. Die Gruppe der Erdalkalimetalle -- Kapitel XVIII. Die Gruppe der Alkalimetalle -- Anhang -- Anhang I. Zahlentabellen -- Anhang II. SI-Einheiten -- Anhang III. Natürliche Nuklide -- Anhang IV. Radien von Atomen und Ionen -- Anhang V. Bindungslängen (ber.) zwischen Hauptgruppenelementen -- Anhang VI. Normalpotentiale -- Anhang VII. Nobelpreise für Chemie und Physik -- Anhang VIII. Nomenklatur der Anorganischen Chemie -- Tafeln -- Tafeln I. Langperiodensystem -- Tafel II. Elemente -- Tafel III. Hauptgruppenelemente -- Tafel IV. Nebengruppenelemente -- Tafel V. Lanthan und Lanthanoide, Actinium und Actinoide -- Tafel VI. Kombiniertes Periodensystem.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Berlin/Boston :Walter de Gruyter GmbH,
    Keywords: Chemistry, Inorganic. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (997 pages)
    Edition: 103th ed.
    ISBN: 9783110495904
    Language: German
    Note: Intro -- Inhalt -- Teil C Nebengruppenelemente -- Kapitel XIX Nebengruppenelemente (Äußere Übergangsmetalle) -- 1 Periodensystem (Teil III) der Nebengruppenelemente -- 1.1 Elektronenkonfiguration der Nebengruppenelemente -- 1.2 Einordnung der Nebengruppenelemente in das Periodensystem -- 2 Trends einiger Eigenschaften der Nebengruppenelemente -- Kapitel XX Grundlagen der Komplexchemie -- 1 Bau und Stabilität der Übergangsmetallkomplexe -- 1.1 Die Komplexbestandteile -- 1.1.1 Komplexliganden -- 1.1.2 Komplexzentren -- 1.2 Die Komplexstabilität -- 1.2.1 Komplexbildungs- und Dissoziationskonstanten -- 1.2.2 Der Chelat-Effekt -- 1.2.3 Redoxstabilität -- 1.3 Der räumliche Bau der Komplexe -- 1.4 Die Isomerie der Komplexe -- 1.4.1 Konstitutionsisomerie der Komplexe -- 1.4.2 Stereoisomerie der Komplexe -- 2 Bindungsmodelle der Übergangsmetallkomplexe. Die chemische Bindung, Teil III -- 2.1 Valenzstruktur-Theorie der Komplexe -- 2.1.1 Zusammensetzung und Stabilität von Komplexen -- 2.1.2 Struktur und magnetisches Verhalten von Komplexen -- 2.2 Ligandenfeld-Theorie der Komplexe -- 2.2.1 Energieaufspaltung der d-Orbitale im Ligandenfeld. Magnetisches Verhalten der Komplexe -- 2.2.2 Ligandenfeldstabilisierungsenergie. Stabilität und Struktur der Komplexe -- 2.2.3 Energieaufspaltung von Termen im Ligandenfeld. Optisches Verhalten der Komplexe -- 2.3 Molekülorbital-Theorie der Komplexe -- 2.3.1 Molekülorbitalschemata der Komplexe -- 2.3.2 Edelgasregel, 18-Elektronenregel -- 2.3.3 Isolobal-Prinzip -- 3 Reaktionsmechanismen der Übergangsmetallkomplexe. Die chemische Reaktion, Teil IV -- 3.1 Nucleophile Substitutionsreaktionen der Komplexe -- 3.1.1 Nucleophile Substitution an tetraedrischen Zentren -- 3.1.2 Nucleophile Substitution an quadratisch-planaren Zentren -- 3.1.3 Nucleophile Substitution an oktaedrischen Zentren -- 3.2 Umlagerungsreaktionen der Komplexe. , 3.3 Redoxreaktionen der Komplexe -- 3.3.1 Elektronentransfer-Prozesse -- 3.3.2 Redoxadditionen und -eliminierungen -- Kapitel XXI Einige Grundlagen der Festkörperchemie -- 1 Synthese von Festkörpern -- 1.1 Überblick -- 1.2 Schmelz- und Erstarrungsdiagramme binärer Systeme (»Phasendiagramme«) -- 1.3 Einige wichtige Legierungsphasen -- 1.4 Transportreaktionen -- 2 Einige Eigenschaften der Festkörper -- 2.1 Magnetische Eigenschaften der Festkörper (»Magnetochemie«) -- 2.1.1 Diamagnetismus und Paramagnetismus -- 2.1.2 Ferromagnetismus, Ferrimagnetismus und Antiferromagnetismus -- 2.1.3 Ferro- und Antiferroelektrizität -- 2.2 Elektrische Eigenschaften der Festkörper -- 2.2.1 Leiter, Nichtleiter, Halbleiter -- 2.2.2 Supraleiter -- 3 Oberflächenreiche sowie nanostrukturierte Materialien -- 3.1 Der aktive Zustand fester Materie -- 3.2 Nanophasen-Materialien -- Kapitel XXII Die Kupfergruppe -- 1 Das Kupfer -- 1.1 Das Element Kupfer -- 1.2 Verbindungen des Kupfers -- 1.2.1 Kupfer(I)-Verbindungen (d10) -- 1.2.2 Kupfer(II)-Verbindungen (d9) -- 1.2.3 Kupfer(III)- und Kupfer(IV)-Verbindungen (d8, d7) -- 1.2.4 Organische Verbindungen des Kupfers -- 2 Das Silber -- 2.1 Das Element Silber -- 2.2 Verbindungen des Silbers -- 2.2.1 Silber(I)-Verbindungen (d10) -- 2.2.2 Silber(II)-Verbindungen (d9) -- 2.2.3 Silber(III)- und Silber(IV)-Verbindungen (d8, d7) -- 2.2.4 Organische Verbindungen des Silbers -- 2.3 Der photographische Prozess -- 3 Das Gold -- 3.1 Das Element Gold -- 3.2 Verbindungen des Golds -- 3.2.1 Gold(I)-Verbindungen (d10) -- 3.2.2 Gold(II)-Verbindungen (d9) -- 3.2.3 Gold(III)-Verbindungen (d8) -- 3.2.4 Gold(IV)- und Gold(V)-Verbindungen (d7,d6) -- 3.2.5 Niedrigwertige Goldverbindungen -- 3.2.6 Organische Verbindungen des Golds -- Kapitel XXIII Die Zinkgruppe -- 1 Das Zink und Cadmium -- 1.1 Die Elemente Zink und Cadmium. , 1.2 Verbindungen des Zinks und Cadmiums -- 1.2.1 Zink(II)- und Cadmium(II)-Verbindungen (d10) -- 1.2.2 Zink(I)- und Cadmium(I)-Verbindungen (d10s1) -- 1.2.3 Organische Verbindungen des Zinks und Cadmiums -- 2 Das Quecksilber -- 2.1 Das Element Quecksilber -- 2.2 Verbindungen des Quecksilbers -- 2.2.1 Quecksilber(I)-Verbindungen (d10s1) -- 2.2.2 Quecksilber(II)-Verbindungen (d10) -- 2.2.3 Niedrigwertige Quecksilberverbindungen -- 2.2.4 Organische Verbindungen des Quecksilbers -- Kapitel XXIV Die Scandiumgruppe -- 1 Die Elemente Scandium, Yttrium, Lanthan und Actinium -- 2 Verbindungen des Scandiums, Yttriums, Lanthans und Actiniums -- Kapitel XXV Die Titangruppe -- 1 Das Titan -- 1.1 Das Element Titan -- 1.2 Verbindungen des Titans -- 1.2.1 Titan(IV)-Verbindungen (d0) -- 1.2.2 Titan(III)-Verbindungen (d1) -- 1.2.3 Titan(II)-Verbindungen (d2) -- 1.2.4 Organische Verbindungen des Titans -- 2 Das Zirconium und Hafnium -- 2.1 Die Elemente Zirconium und Hafnium -- 2.2 Verbindungen des Zirconiums und Hafniums -- 2.2.1 Wasserstoffverbindungen -- 2.2.2 Halogen- und Pseudohalogenverbindungen -- 2.2.3 Chalkogenverbindungen -- 2.2.4 Pentel-, Tetrel-, Trielverbindungen -- 2.2.5 Organische Verbindungen des Zirconiums und Hafniums -- Kapitel XXVI Die Vanadiumgruppe -- 1 Das Vanadium -- 1.1 Das Element Vanadium -- 1.2 Verbindungen des Vanadiums -- 1.2.1 Vanadium(V)-Verbindungen (d0) -- 1.2.2 Vanadium(IV)-Verbindungen (d1) -- 1.2.3 Vanadium(III)- und Vanadium(II)-Verbindungen (d2, d3) -- 1.2.4 Organische Verbindungen des Vanadiums -- 2 Das Niobium und Tantal -- 2.1 Die Elemente Niobium und Tantal -- 2.2 Verbindungen des Niobiums und Tantals -- 2.2.1 Wasserstoffverbindungen -- 2.2.2 Halogen- und Pseudohalogenverbindungen -- 2.2.3 Chalkogenverbindungen -- 2.2.4 Pentel-, Tetrel-, Trielverbindungen -- 2.2.5 Organische Verbindungen des Niobiums und Tantals. , Kapitel XXVII Die Chromgruppe -- 1 Das Chrom -- 1.1 Das Element Chrom -- 1.2 Verbindungen des Chroms -- 1.2.1 Chrom(VI)-Verbindungen -- 1.2.2 Chrom(V)- und Chrom(IV)-Verbindungen -- 1.2.3 Chrom(III)-Verbindungen -- 1.2.4 Chrom(II)-Verbindungen -- 1.2.5 Organische Verbindungen des Chroms -- 2 Das Molybdän und Wolfram -- 2.1 Die Elemente Molybdän und Wolfram -- 2.2 Verbindungen des Molybdäns und Wolframs -- 2.2.1 Wasserstoffverbindungen -- 2.2.2 Halogen- und Pseudohalogenverbindungen -- 2.2.3 Chalkogenverbindungen -- 2.2.4 Pentel-, Tetrel- und Trielverbindungen -- 2.2.5 Molybdän- und Wolfram-Komplexe -- 2.2.6 Organische Verbindungen des Molybdäns und Wolframs -- Kapitel XXVIII Die Mangangruppe -- 1 Das Mangan -- 1.1 Das Element Mangan -- 1.2 Verbindungen des Mangans -- 1.2.1 Mangan(II)-Verbindungen (d5) -- 1.2.2 Mangan(III)- u. Mangan(IV)-Verbindungen (d4, d3) -- 1.2.3 Mangan(V)-, (VI)-, (VII)-Verbindungen (d2, d1, d0) -- 1.2.4 Organische Verbindungen des Mangans -- 2 Das Technetium und Rhenium -- 2.1 Die Elemente Technetium und Rhenium -- 2.2 Verbindungen des Technetiums und Rheniums -- 2.2.1 Wasserstoffverbindungen -- 2.2.2 Halogen- und Pseudohalogenverbindungen -- 2.2.3 Chalkogenverbindungen -- 2.2.4 Pentel-, Tetrel-, Trielverbindungen -- 2.2.5 Technetium- und Rheniumkomplexe -- 2.2.6 Organische Verbindungen des Technetiums und Rheniums -- Kapitel XXIX Die Eisengruppe -- 1 Das Eisen -- 1.1 Das Element Eisen -- 1.1.1 Vorkommen -- 1.1.2 Darstellung -- 1.1.3 Physikalische Eigenschaften -- 1.1.4 Chemische Eigenschaften -- 1.1.5 Verwendung, Legierungen -- 1.1.6 Eisen in Verbindungen -- 1.2 Verbindungen des Eisens -- 1.2.1 Eisen(II)- und Eisen(III)-Verbindungen -- 1.2.2 Eisen(VI)-, (V)-, (IV)-Verbindungen -- 1.2.3 Organische Verbindungen des Eisens -- 2 Das Ruthenium und Osmium -- 2.1 Die Elemente Ruthenium und Osmium. , 2.2 Verbindungen des Rutheniums und Osmiums -- 2.2.1 Wasserstoffverbindungen -- 2.2.2 Halogen- und Pseudohalogenverbindungen -- 2.2.3 Chalkogenverbindungen -- 2.2.4 Pentel-, Tetrel-, Trielverbindungen -- 2.2.5 Ruthenium- und Osmiumkomplexe -- 2.2.6 Organische Verbindungen des Rutheniums und Osmiums -- Kapitel XXX Die Cobaltgruppe -- 1 Das Cobalt -- 1.1 Das Element Cobalt -- 1.2 Verbindungen des Cobalts -- 1.2.1 Cobalt(II)- und Cobalt(III)-Verbindungen -- 1.2.2 Cobalt(IV)-und Cobalt(V)-Verbindungen -- 1.2.3 Organische Verbindungen des Cobalts -- 2 Das Rhodium und Iridium -- 2.1 Die Elemente Rhodium und Iridium -- 2.2 Verbindungen des Rhodiums und Iridiums -- 2.2.1 Wasserstoffverbindungen -- 2.2.2 Halogen-und Pseudohalogenverbindungen -- 2.2.3 Chalkogenverbindungen -- 2.2.4 Pentel-, Tetrel-, Trielverbindungen -- 2.2.5 Rhodium-und Iridiumkomplexe -- 2.2.6 Organische Verbindungen des Rhodiums und Iridiums -- Kapitel XXXI Die Nickelgruppe -- 1 Das Nickel -- 1.1 Das Element Nickel -- 1.2 Verbindungen des Nickels -- 1.2.1 Nickel(II)- und Nickel(III)-Verbindungen -- 1.2.2 Nickel(IV)-Verbindungen (d6) -- 1.2.3 Organische Verbindungen des Nickels -- 2 Das Palladium und Platin -- 2.1 Die Elemente Palladium und Platin -- 2.2 Verbindungen des Palladiums und Platins -- 2.2.1 Wasserstoffverbindungen -- 2.2.2 Halogen- und Pseudohalogenverbindungen -- 2.2.3 Chalkogenverbindungen -- 2.2.4 Pentel-, Tetrel-, Trielverbindungen -- 2.2.5 Palladium- und Platinkomplexe -- 2.2.6 Organische Verbindungen des Palladiums und Platins -- Kapitel XXXII Überblick über wichtige Verbindungsklassen der Übergangsmetalle -- 1 Einige Klassen anorganischer Übergangsmetallverbindungen -- 1.1 Wasserstoffverbindungen -- 1.1.1 Übergangsmetallhydride -- 1.1.2 Diwasserstoffkomplexe der Übergangsmetalle -- 1.2 Halogen- und Pseudohalogenverbindungen -- 1.2.1 Übergangsmetallhalogenide. , 1.2.2 Metallcluster-Komplexe vom Halogenid-Typ.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-12-22
    Description: Investigating the influence of surface friction on the inertial oscillation (IO) of an extratropical, non-growing, convective boundary layer (CBL), we paid particular attention to the stability-dependent interactive coupling of shear-induced turbulence and turbulent friction, which leads to a nonlinear relationship between friction and velocity. We showed that in contrast to common perception, IO damping is controlled not only by friction but also by the dependence of friction on velocity. Furthermore, we found that surface friction not only causes damping but also modifies the restoring force. Using these basic principles, we studied the oscillatory properties (equilibrium, periodicity and damping) of the CBL by means of a model based on Monin–Obukhov surface-layer similarity (MOS) and the mixed-layer approximation. We found that the model complies with a quadratic surface stress–velocity relationship (QS) in the neutral limit, and a linear surface stress–velocity relationship (LS) in the proximity of the free-convective limit. Dynamically, the LS leads to a harmonic oscillation with a constant periodicity and exponential damping of the IO. However, the QS displays rather complex anharmonic behaviour; in comparison with the LS it produces a 50% stronger overall damping and a 100% larger contribution to the restoring force. Considering CBLs of arbitrary stability, we found that the MOS stress–velocity relation can be very well approximated by a much simpler linear combination of the LS and the QS which, respectively, represent the convective and the shear-induced contributions to friction. This enabled us to link the set of the external parameters (surface roughness, surface buoyancy flux and boundary layer depth) to a set of three effective parameters: the equilibrium velocity, the convective friction constant and the neutral friction constant. Together with the Coriolis coefficient, these parameters completely determine the IO. Copyright © 2012 Royal Meteorological Society
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 29 (1989), S. 107-112 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An approach to realize the reinforcement of a thermoset system at the molecular level by rigid-rod polymers was investigated. A mixture of bisbenzocyclobutene (BCB)-terminated imide oligomers constitutes the thermosetting component, and the rigid-rod polymer utilized in the present study was poly(p-phenylene benzothiazole) (PBT). The cure chemistry of the thermoset materials is based on the ability of benzocyclobutene functions to homopolymerize under the influence of heat. Thermal properties as well as film processing and mechanical properties of PBT/BCB thermoset composites are presented.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 31 (1993), S. 1799-1807 
    ISSN: 0887-6266
    Keywords: ion implantation ; rigid-rod polymer ; poly(p-phenylene benzobisthiazole) ; poly(p-phenylene benzobisoxazole) ; rigid-rod pseudo-ladder polymer ; poly(p-(2,5 dihydroxy) phenylene benzobisthiazole) ; poly(p-(2,5-dihydroxy) phenylene benzobisoxazole) ; poly(p-(2,5-dihydroxy) phenylene benzobisimidazole) ; ladder polymer ; poly(benzimidazobenzophenanthroline) ; electrical conductivity ; molecular structure effect ; molecular orientation effect ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Isotropic and oriented thin films of rigid-rod, rigid-rod pseudo-ladder, and ladder polymers were ion-bombarded with 84Kr+ to a dose of 4 × 1016 ions/cm2. The bombardment was conducted at two conditions: one at 190 keV energy with 0.12 μA/cm2 current density and the other at 200 keV energy with 2.0 μA/cm2 current density. With the low current density, the polymers developed a uniform ion-bombarded layer of about 0.35 μm at the surface. This layer showed an electrical conductivity on the order of 10-3s/cm at ambient conditions, an enhancement of 6 to 9 orders of magnitude from the pristine polymers. The enhanced conductivity was found to decrease to 10-6s/cm after the implanted krypton was removed by heating under reduced pressure. It suggests that the enhanced conductivity was due to a synergistic effect of structural change of the polymers and chemical doping by the im-planted ions. With the high current density, most polymer films, except that of rigid-rod pseudo-ladder poly(p-(2,5-dihydroxy) phenylene benzobisthiazole) (DPBT), developed an additional fibrous network structure over the uniform ion-bombarded layer. The comparable conductivity, 53 to 157 s/cm, measured for the various ion-bombarded films in-dicated that neither the molecular structure, rigid-rod or ladder, nor the molecular packing order, isotropic or oriented, constituted significant effect on the conductivity of ion-bombarded polymers. Since krypton could not be detected in the polymers ion-bombarded with high current density, the enhanced conductivity was attributed to the structural change of the polymers. The DPBT films ion-bombarded with high current density showed holes of micron size, probably due to the decomposition of hydroxy pendents from the rigid-rod backbone. © 1993 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 1881-1891 
    ISSN: 0887-6266
    Keywords: crosslinking ; poly(p-phenylene benzobis thiazole) ; PBZT ; methyl pendant PBZT ; 13C solid state NMR ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In order to influence the compressive strength of the rigid rod polymeric fibers, methyl pendent poly(p-phenylene benzobisthiazole) fibers have been heat treated in the 400 to 550°C temperature range in air and in nitrogen for varying times to achieve intermolecular crosslinking. These fibers have been examined using Fourier transform infrared (FTIR) spectroscopy, 13C solid-state nuclear magnetic resonance (NMR) swelling behavior, and scanning electron microscopy. 13C NMR has also been carried out on solutions of as-spun fibers. Fibers heat-treated at 400°C, both in nitrogen and in air, up to heat-treatment times of 60 min are insoluble in 99% chlorosulfonic acid, however no direct evidence of crosslinking has been obtained for these fibers using spectroscopic techniques, suggesting that in these fibers the degree of crosslinking must be very low. Evidence that methyl groups are precursors to certain crosslinks was first seen via a weak methylene resonance in 13C solid-state NMR, corresponding to about 2% of the original methyl intensity, in a sample heat-treated at 450°C in air. Fibers heat-treated in nitrogen at 550°C for 10 minutes do not exhibit any swelling in chlorosulfonic acid, are brittle, have lost most methyl groups; however, some CH2 groups form. In this fiber, the carbon intensity for the CH2 group in the 13C solid-state NMR is 18% of the intensity for the CH3 group in the as-spun fiber. The fibers heat-treated at 400 and 450°C show a fibrillar morphology, while the fibrillar morphology is not observed in the fibers heat-treated at 550°C in nitrogen for 10 min. Based on this work, it is our judgment that if heat treatment of this material is to improve compressive strength, the heat treatment protocol of time and temperature will probably be critical and the highest temperatures of exposure will probably lie in the 450 to 550°C range. © 1996 John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 2925-2933 
    ISSN: 0887-6266
    Keywords: ionic conductivity ; DC conductivity ; rigid-rod polymer ; depletion measurement ; X-ray scattering ; anisotropic ; polymer electrolyte ; polyelectrolyte ; conducting polymers ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The conductivity study results of lithium-doped sulfonated PBI, a conjugated rigid rod polymer, poly[(1,7-dihydrobenzo[1,2-d:4,5-d′]dimidazole-2,6-diyl)-2-(2-sulfo)-p-phenylene], derivatized with pendants of propane sulfonate Li+ ionomer are reported. The room-temperature DC four-probe conductivity parallel to the surface of cast films was as large as 8.3 × 10-3 S/cm. Similar measurements with an eight-probe configuration showed no difference between bulk and surface conductivity. The ionic nature of the conductivity was indicated by constant voltage depletion experiments and by secondary ion mass spectroscopy measurements of the residues near the electrodes. The DC two-probe conductivity measured transverse to the sample surface was three to four orders of magnitude smaller than longitudinal conductivity, while the AC two-probe conductivity was even less. Electron microscopy indicated that the films had a layered structure parallel to the surfaces. This structural anisotropy was confirmed by refractive index values obtained from wave-guide experiments and by wide angle X-ray scattering. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2925-2933, 1997
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 31 (1993), S. 1941-1950 
    ISSN: 0887-6266
    Keywords: rigid-rod polymer ; cation ; dialysis ; molecular weight ; cast ; aggregated ; isotropic ; anisotropic ; film ; depletion measurement ; ionic conductivity ; x-ray scattering ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Poly[(1,7-dihydrobenzo[1,2-d:4,5-d′] diimidazole-2,6-diyl)-2-(2-sulfo)-p-phenylene], a conjugated rigid-rod polymer, was derivatized with pendants of propane-sulfonated ionomers. The derivatized rigid-rod polymer was soluble in aprotic solvents as well as in water for isotropic solutions that were processed into isotropic films. Direct-current electrical conductivity σ of the films was measured using the four-probe technique. Room-temperature σ as high as 2.9 × 10-4S/cm was achieved on pristine isotropic films without using dopants. When the rigid-rod polymer concentration exceeded 25 wt %, the isotropic solution could be transformed into a liquid-crystalline solution that allowed deformations to be applied to produce anisotropic films. Significant increase in σ was obtained in a sheared film along both the parallel direction (∥) and the transverse direction (⊥) with a σ∥/σ⊥ = 5. Additionally, enhanced σ was realized in films heat-treated at about 100°C, in the derivatized polymer with higher molecular weight from dialysis, and in substituting the sulfonated ion Na+ by H+ in the pendants of the polymers. Constant-voltage measurements were applied to the polymers to monitor the σ stability for ascertaining the nature of the conductivity. No electronic contribution in σ was detected. Instead, a monotonically decreasing σ was consistently observed indicative of ionic conductivity. © 1993 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 15 (1971), S. 2035-2047 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A new method of obtaining films of aromatic heterocyclic ladder polymers has been found which circumvents casting from high-boiling acidic solvents. The BBL ladder polymer has been formed into tough, durable films by collecting suspensions of the polymer obtained from acid reprecipitations upon a fritted glass funnel. After drying, the polymer can be removed as film, with thickness dependent upon the amount of material used. Such a film has a tensile strength of 9,600 lb/in.2 as compared to a tensile strength of 16,000 lb/in.2 obtained from the same polymer when cast from methanesulfonic acid solution.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...