GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bentham Science Publishers Ltd.  (3)
Material
Publisher
  • Bentham Science Publishers Ltd.  (3)
Language
Years
FID
  • 1
    Online Resource
    Online Resource
    Bentham Science Publishers Ltd. ; 2020
    In:  Current Pharmaceutical Biotechnology Vol. 21, No. 2 ( 2020-02-12), p. 140-148
    In: Current Pharmaceutical Biotechnology, Bentham Science Publishers Ltd., Vol. 21, No. 2 ( 2020-02-12), p. 140-148
    Abstract: Castration-resistant Prostate Cancer (CRPC) is a fatal disease with rapid growth. The malignancy usually presents with metastasis and poor prognosis, and causes 100% mortality. Therefore, the treatment of CRPC is extremely challenging, and its pathogenesis need to be elucidated urgently. Objective: The high throughput sequencing technology was used to sequence the whole exome associated with CRPC, to explore the molecular mechanism of CRPC, and to find the potential therapeutic targets. Methods: We performed whole-exome sequencing of FFPE tissue from 11 Chinese adult male patients. Genomic DNA was fragmented and enriched for whole-exome sequencing using the QiAamp DNA FFPE Tissue KIT, sequenced on an Illumina HiSeq2000 platform, and the relevant genes were analyzed using biological information. Finally, immunohistochemistry method was used to detect the phosphorylation level of LATS1 in CRPC tissues of MST1 mutant and non-mutant patients. Results: We have screened 85 significant mutant genes with relatively high mutation rates of TP53, AR, KMT2, DMAPK1, PIK3R1, SH2B3, WHSC1, KMT2D, MST1 and MAPK1. We first found that MST1 has multiple mutations in CRPC patients, and the MST1 plays an important role in the Hippo pathway. Immunohistochemistry results showed that the phosphorylation level of LATS1 in the mutant patients was significantly lower than that in the non-mutant patients. Conclusion: We speculate that MST1 would be a new potential target for the treatment of CRPC by regulating Hippo signaling pathway. The results provided an important clue to the molecular mechanism of CRPC.
    Type of Medium: Online Resource
    ISSN: 1389-2010
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2020
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Bentham Science Publishers Ltd. ; 2023
    In:  Combinatorial Chemistry & High Throughput Screening Vol. 26 ( 2023-06-22)
    In: Combinatorial Chemistry & High Throughput Screening, Bentham Science Publishers Ltd., Vol. 26 ( 2023-06-22)
    Abstract: This study aimed to clarify the anti-osteoporosis mechanism of Cnidii Fructus (CF) via network pharmacology and experimental verification. Methods: HPLC fingerprints combined with HPLC-Q-TOF-MS/MS analysis confirmed common components (CCS) of CF. Then, network pharmacology was used to investigate the anti-OP mechanism of CF, including potential anti-OP phytochemicals, potential targets, and related signalling pathway. Molecular docking analysis was carried on investigating the protein-ligand interactions. Finally, in vitro experiments were performed to verify anti-OP mechanism of CF. Results: In this study, 17 compounds from CF were identified by HPLC-Q-TOF-MS/MS and HPLC fingerprints and then were further screened key compounds and potential targets by PPI analysis, ingredient-target network and hub network. The key compounds were SCZ10 (Diosmin), SCZ16 (Pabulenol), SCZ6 (Osthenol), SCZ8 (Bergaptol) and SCZ4 (Xanthotoxol). The potential targets were SRC, MAPK1, PIK3CA, AKT1 and HSP90AA1. Molecular docking further analysis indicated that the five key compounds have a good binding affinity with related proteins. CCK8 assays, TRAP staining experiments, and ALP activity assays concluded that osthenol and bergaptol inhibited osteoclast formation and promoted osteoblast bone formation to improve osteoporosis. Conclusion: Based on network pharmacology and in vitro experiments analysis, this study revealed that CF possessed an anti-OP effect, and its potential therapeutic effect may be involved with osthenol and bergaptol from CF.
    Type of Medium: Online Resource
    ISSN: 1386-2073
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2023
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Bentham Science Publishers Ltd. ; 2023
    In:  Endocrine, Metabolic & Immune Disorders - Drug Targets Vol. 23, No. 8 ( 2023-07), p. 1077-1086
    In: Endocrine, Metabolic & Immune Disorders - Drug Targets, Bentham Science Publishers Ltd., Vol. 23, No. 8 ( 2023-07), p. 1077-1086
    Abstract: Patients with type 2 diabetes mellitus (T2DM) are at high risk for osteoporosis. SIRT1 plays an important regulatory role in the occurrence and development of diabetes mellitus; however, it is still not clear whether SIRT1 is directly related to the osteogenic ability of bone marrow mesenchymal stem cells (BMSCs) in T2DM patients. Methods: We obtained BMSCs from patients with T2DM and healthy volunteers to determine the effect of SIRT1 expression on the osteogenic capacity of BMSCs. As a result, SIRT1 expression in BMSCs in T2DM was significantly lower compared to healthy volunteers, but the proliferative capacity of BMSCs in the T2DM group was not significantly different from that of healthy volunteers. Results: During osteogenic differentiation, the expression of SIRT1 in MSCs from T2DM patients was significantly decreased, and the osteogenic differentiation ability of MSCs from T2DM patients was significantly lower than healthy volunteers. After intervention with resveratrol, the expression of SIRT1 increased significantly, and the apoptotic rate of MSCs in T2DM patients decreased significantly. Moreover, resveratrol promoted osteoblast differentiation of MSCs. Conclusion: Our study confirmed that the expression of SIRT1 is directly related to the osteogenic potential of BMSCs in patients with T2DM. Resveratrol promoted the osteogenic differentiation of BMSCs by increasing the expression of SIRT1. The increased expression of SIRT1 significantly reduced BMSC apoptosis during osteogenic differentiation, which is one of the important mechanisms by which SIRT1 regulates the osteogenic ability of BMSCs. Our data also provide strong evidence that resveratrol may be used in the treatment of osteoporosis in patients with T2DM.
    Type of Medium: Online Resource
    ISSN: 1871-5303
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...