GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-02-27
    Description: We present results of marine MT acquisition in the Alboran sea that also incorporates previously acquired land MT from southern Spain into our analysis. The marine data show complex MT response functions with strong distortion due to seafloor topography and the coastline, but inclusion of high resolution topography and bathymetry and a seismically defined sediment unit into a 3D inversion model has allowed us to image the structure in the underlying mantle. The resulting resistivity model is broadly consistent with a geodynamic scenario that includes subduction of an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath the Alboran. Our model contains three primary features of interest: a resistive body beneath the central Alboran, which extends to a depth of ~150 km. At this depth, the mantle resistivity decreases to values of ~100 Ohm-m, slightly higher than those seen in typical asthenosphere at the same depth. This transition suggests a change in slab properties with depth, perhaps reflecting a change in the nature of the seafloor subducted in the past. Two conductive features in our model suggest the presence of fluids released by the subducting slab or a small amount of partial melt in the upper mantle (or both). Of these, the one in the center of the Alboran basin, in the uppermost-mantle (20-30km depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is consistent with geochemical models, which infer highly thinned lithosphere and shallow melting in order to explain the petrology of seafloor volcanics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: We present a deep electrical resistivity image from the passive continental margin in Namibia. The approximately 700 km long magnetotelluric profile follows the Walvis Ridge offshore, continues onshore across the Kaoko Mobile Belt and reaches onto the Congo Craton. Two-dimensional inversion reveals moderately resistive material offshore, atypically low for oceanic lithosphere, reaching depths of 15–20 km. Such moderate resistivities are consistent with seismic P wave velocity models, which suggest up to 35 km thick crust. The Neoproterozoic rocks of the Kaoko Mobile Belt are resistive, but NNW-striking major shear-zones are imaged as subvertical, conductive structures in the upper and middle crust. Since the geophysical imprint of the shear zones is intact, opening of the South Atlantic in the Cretaceous did not alter the middle crust. The transition into the cratonic region coincides with a deepening of the high-resistive material to depths of more than 60 km.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: Deep sea pockmarks underlain by chimney-like or pipe structures that contain methane hydrate are abundant along the Norwegian continental margin. In such hydrate provinces the interaction between hydrate formation and fluid flow has significance for benthic ecosystems and possibly climate change. The Nyegga region, situated on the western Norwegian continental slope, is characterized by an extensive pockmark field known to accommodate substantial methane gas hydrate deposits. The aim of this study is to detect and delineate both the gas hydrate and free gas reservoirs at one of Nyegga's pockmarks. In 2012, a marine controlled-source electromagnetic (CSEM) survey was performed at a pockmark in this region, where high-resolution three-dimensional seismic data were previously collected in 2006. Two-dimensional CSEM inversions were computed using the data acquired by ocean bottom electrical field receivers. Our results, derived from unconstrained and seismically constrained CSEM inversions, suggest the presence of two distinctive resistivity anomalies beneath the pockmark: a shallow vertical anomaly at the underlying pipe structure, likely due to gas hydrate accumulation, and a laterally extensive anomaly attributed to a free gas zone below the base of the gas hydrate stability zone. This work contributes to a robust characterization of gas hydrate deposits within sub-seafloor fluid flow pipe structures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts .
    Publication Date: 2012-07-06
    Description: EGU2010-9841 Active mud volcanoes, where changing salinities of pore fluids, large temperature gradients and occurrences of free gas are frequently observed, should potentially exhibit significant variability in their internal resistivity structure. This is due to the fact that the bulk resistivity is mainly determined by the porosity of sediments and the electrical resistivity of the pore filling contained therein. The resistivity variations may be derived from controlled source electromagnetic (CSEM) measurements. CSEM systems consist of an electric dipole transmitter producing a time varying source field and electric dipole receivers, which measure the earth´s response to this signal. For a RWE Dea funded investigation of fluid and gas leakages at the North Alex Mud Volcano (NAMV) - a comparatively small target with an area of about 1km2 - we have developed a new high resolution CSEM system. The system consists of several autonomous electric dipole receivers and a lightweight electric dipole transmitter, which can be mounted on a small remotely operated underwater vehicle (ROV). The use of a ROV allows for a precise placement of the transmitter, which is a necessary prerequisite for the investigation of such a small target. Furthermore, electromagnetic signals may be transmitted from different directions with respect to the stationary receivers, allowing for a 3D-style tomographic experiment. In this experiment, ten receivers were deployed over the surface of NAMV at a total of 16 receiver locations. During three successful dives with a Cherokee ROV (Ghent University, Belgium), the transmitter was deployed at a total of 80 locations. Here we present first quantitative results consisting of apparent resistivity estimations from the CSEM time domain data for each transmitter-receiver pair. The apparent resistivity map shows that the NAMV indeed has a heterogeneous resistivity structure with apparent resistivities varying by at least a factor of two: low apparent resistivities (~ 0.8Ωm) are found towards the center of the MV, whereas higher apparent resistivities (~ 1.6Ωm) prevail away from the center. In a second step, we interpret the time-domain data based on 1D inversions. Good data fits can be achieved by models containing 2-3 layers. Generally, the models indicate low resistivities at the surface, which can be associated with penetrating salt water and/or high temperatures. Toward greater depths, increasing resistivities presumably are due to a combination of compaction of sediments (i.e. reduced pore space), an increased presence of fresh water and possible occurrences of free gas. For some 1D models, the increase in resistivity exceeds a factor of 10 or more and layer interfaces are indicated down to depths of up to 70m. The derived resistivity variations observed at the NAMV will be interpreted in conjunction with temperature (Feseker, this session), fluid flow (Brückmann et al., this session) and seismic data (Bialas et al., this session) acquired. Temperature variations measured in the upper few meters are related to fluid flow, where high temperatures are indicative of upwelling fluids of low salinity and low temperature of either a downward flow of saline fluids or no flow activity. This type of surface measurement constitutes an integrative fluid flow gauge, which we can resolve vertically with our resistivity models. Seismic data yield a background structure to our resistivity model. New analysis of seismic data shows that seismic activity may also be linked to fluid flow activity, which we aim to match with resistivity variations and oscillations, which were observed in the electric and magnetic fields (Lefeldt et al., this session).
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-09-26
    Description: During cruise MSM103 (12.9. 15.11.2021), carried out as part of the SOURCE project, multidisci-plinary investigations were carried out in the Gulf of St. Lawrence Gulf north of Prince EdwardIsland (PEI) to identify and quantify offshore aquifers in the region. For this purpose, seismic, elec-tromagnetic and hydroacoustic measurements were carried out and sediment samples were obtainedwith the gravity corer. The structure of the seabed and the seafloor were explored using acousticmethods. A large number of channel structures could be detected in sections, which are interpretedas parts of glacial or postglacial drainage systems. It is not yet possible to say whether these are con-nected to any existing deeper groundwater systems. In the hydroacoustic data, no escapes of freshwater or gas could be observed in the water column during the cruise. In several places, however, ablanking was evident in the seafloor, which indicates the occurrence of gases and could hint atpotential pathways for gas and / or freshwater in the seafloor. Here, an extended evaluation of thehydroacoustic data after the cruise will provide further insight. In sediment samples taken at a loca-tion north of PEI, a significant drop in salinity and resistivity could be detected in the upper 3m ofthe sediment, which provided a first direct indication of the presence of fresher groundwater. Fromthe electromagnetic measurements carried out in seven working areas, we hope to be able to con-tinue this punctual information over larger areas in order to obtain an extended insight into the pres-ence and distribution of freshwater deposits by the detection of anomalies of the electricalconductivity.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: The time‐domain controlled source electromagnetic method is a geophysical prospecting tool applied to image the subsurface resistivity distribution on land and in the marine environment. In its most general setup, a square‐wave current is fed into a grounded horizontal electric dipole, and several electric and magnetic field receivers at defined offsets to the imposed current measure the electromagnetic response of the Earth. In the marine environment, the application often uses only inline electric field receivers that, for a 50% duty‐cycle current waveform, include both step‐on and step‐off signals. Here, forward and inverse 1D modelling is used to demonstrate limited sensitivity towards shallow resistive layers in the step‐off electric field when transmitter and receivers are surrounded by conductive seawater. This observation is explained by a masking effect of the direct current signal that flows through the seawater and primarily affects step‐off data. During a step‐off measurement, this direct current is orders of magnitude larger than the inductive response at early and intermediate times, limiting the step‐off sensitivity towards shallow resistive layers in the seafloor. Step‐on data measure the resistive layer at times preceding the arrival of the direct current signal leading to higher sensitivity compared to step‐off data. Such dichotomous behaviour between step‐on and step‐off data is less obvious in onshore experiments due to the lack of a strong overlying conductive zone and corresponding masking effect from direct current flow. Supported by synthetic 1D inversion studies, we conclude that time‐domain controlled source electromagnetic measurements on land should apply both step‐on and step‐off data in a combined inversion approach to maximise signal‐to‐noise ratios and utilise the sensitivity characteristics of each signal. In an isotropic marine environment, step‐off electric fields have inferior sensitivity towards shallow resistive layers compared to step‐on data, resulting in an increase of non‐uniqueness when interpreting step‐off data in a single or combined inversion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Electromagnetic loop systems rely on the use of non‐conductive materials near the sensor to minimize bias effects superimposed on measured data. For marine sensors, rigidity, compactness, and ease of platform handling are essential. Thus, commonly a compromise between rigid, cost‐effective, and non‐conductive materials (e.g. stainless steel versus fiberglass composites) needs to be found. For systems dedicated to controlled‐source electromagnetic measurements, a spatial separation between critical system components and sensors may be feasible, whereas compact multi‐sensor platforms, remotely operated vehicles, and autonomous unmanned vehicles require the use of electrically conductive components near the sensor. While data analysis and geological interpretations benefit vastly from each added instrument and multidisciplinary approaches, this introduces a systematic and platform immanent bias in the measured electromagnetic data. In this scope we present two comparable case studies targeting loop‐source electromagnetic applications in both time and frequency domain: the MARTEMIS time domain system trades the compact design for a clear separation of 15 m between an upper fiberglass frame, holding most critical titanium system components, and a lower frame with its coil and receivers. In case of the GOLDEN EYE frequency domain profiler, the compact and rigid design is achieved by a circular fiberglass platform, carrying the transmitting and receiving coils, as well as several titanium housings and instruments. In this study, we analyze and quantify the quasi‐static influence of conductive objects on time and frequency domain coil systems by applying an analytically and experimentally verified 3D finite element model. Moreover, we present calibration and optimization procedures to minimize bias inherent in the measured data. The numerical experiments do not only show the significance of the bias on the inversion results, but also the efficiency of a system calibration against the analytically calculated response of a known environment. The remaining bias after calibration is a time/frequency dependent function of seafloor conductivity, which doubles the commonly estimated noise‐floor from 1% to 2%, decreasing the sensitivity and resolution of the devices. By optimizing size and position of critical conductive system components (e.g. titanium housings) and/or modifying the transmitter/receiver geometry, we significantly reduce the effect of this residual bias on the inversion results as demonstrated by 3D‐modelling. These procedures motivate the opportunity to design dedicated, compact, low‐bias platforms and provide a solution for autonomous and remotely steered designs by minimizing their effect on the sensitivity of the controlled‐source electromagnetic sensor.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: The northern part of the South China Sea is characterized by widespread occurrence of bottom simulating reflectors (BSR) indicating the presence of marine gas hydrate. Because the area covers both a tectonically inactive passive margin and the termination of a subduction zone, the influence of tectonism on the dynamics of gas hydrate systems can be studied in this region. Geophysical data show that there are multiple thrust faults on the active margin while much fewer and smaller faults exist in the passive margin. This tectonic difference matches with a difference in the geophysical characteristics of the gas hydrate systems. High hydrate saturation derived from ocean bottom seismometer data and controlled source electromagnetic data and conspicuous high‐amplitude reflections in P‐Cable 3D seismic data above the BSR are found in the anticlinal ridges of the active margin. In contrast all geophysical evidence for the passive margin points to normal to low hydrate saturations. Geochemical analyses of gas samples collected at seep sites on the active margin show methane with heavy δ13C isotope composition, while gas collected at the passive margin shows light carbon isotope composition. Thus, we interpret the passive margin as a typical gas hydrate province fuelled by biogenic production of methane and the active margin gas hydrate system as a system that is fuelled not only by biogenic gas production but also by additional advection of thermogenic methane from the subduction system.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: A GEOMAR (Kiel, Germany) research team has developed a passive electric field acquisition system for Autonomous Underwater Vehicles (AUVs) to optimize seafloor massive sulfides exploration. This sensor was made of two perpendicular and horizontal pairs of electrodes, and was successfully tested over active basalt-hosted hydrothermal site TAG (26°N, Mid-Atlantic Ridge) and several inactive sites in its vicinity. The resulting data underline the efficiency of combining deep-sea electric and magnetic measurements for searching for active and inactive hydrothermal vent fields. With these datasets, it becomes possible to determine the geological nature of the targets and to constrain the characteristics of fluid circulation at depth without involving costly and invasive underwater tools such as Remotely Operated Vehicles or even manned submersibles to collect samples. Data analysis also revealed that AUV attitude variations induce distortions of the electric signal. These distortions start prevailing for dives at altitudes higher than 90 m above the seafloor, as the distance between the AUV becomes too important to guarantee that the signal produced by the geological target still dominates. To improve the acquisition system and reduce the overall noise, we discuss solutions that limit the impact of such attitude variations. These solutions consist of minor adjustments, such as masts at AUVs stern to tow damping electrodes arrays. In such configurations, we believe that deep-sea passive electric measurements combined with high-resolution magnetic measurements can become a highly efficient seafloor exploration tool, including for sulfide deposits associated with inactive hydrothermal systems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-21
    Description: Accessible seafloor minerals located near mid‐ocean ridges are noticed to mitigate the projected metal demands of the net‐zero energy transition, promoting growing interest in quantifying the global distributions of seafloor massive sulfides (SMS). Mineral potentials are commonly estimated using geophysical and geological data that lastly rely on additional confirmation studies using sparsely available, locally limited, seafloor imagery, grab samples, and coring data. This raises the challenge of linking in situ confirmation data to geophysical data acquired at disparate spatial scales to obtain quantitative mineral predictions. Although multivariate data sets for marine mineral research are incessantly acquired, robust, integrative data analysis requires cumbersome workflows and experienced interpreters. We introduce an automated two‐step machine learning approach that integrates the mound detection through image segmentation with geophysical data. SMS predictors are subsequently clustered into distinct classes to infer marine mineral potentials that help guide future exploration. The automated workflow employs a U‐Net convolutional neural network to identify mound structures in bathymetry data and distinguishes different mound classes through the classification of mound architectures and magnetic signatures. Finally, controlled source electromagnetic data are utilized together with in situ sampling data to reassess predictions of potential SMS volumes. Our study focuses on the Trans‐Atlantic Geotraverse area, which is among the most explored SMS areas worldwide and includes 15 known SMS sites. The automated workflow classifies 14 of the 15 known mounds as exploration targets of either high or medium priority. This reduces the exploration area to less than 7% of the original survey area from 49 to 3.1 km 2 . Key Points A two‐step machine learning workflow identifies mound structures in bathymetry data and classifies their origins based on auxiliary data Significant increase in potential seafloor massive sulfides (SMS) edifices detected within the trans‐Atlantic geo‐traverse hydrothermal field distributed within latitudinal bands SMS mineral potential is likely lower than previously assumed due to heterogeneously distributed mineralization within mounds
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...