GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • BIOMED CENTRAL LTD  (1)
  • PLOS  (1)
  • SPRINGER HEIDELBERG  (1)
Document type
Years
  • 1
    facet.materialart.
    Unknown
    SPRINGER HEIDELBERG
    In:  EPIC3Marine Biodiversity, SPRINGER HEIDELBERG, 49(1), pp. 345-355, ISSN: 1867-1616
    Publication Date: 2019-05-21
    Description: Pontellid copepods are archetypical representatives of the neuston — the highly specialized community living in the top 5–10 cm of the ocean surface. Their deep blue pigmentation and large eyes are unique adaptations to surface irradiation and carnivory, but poor prerequisites for survival in the transparent waters beneath the sea surface. Here, we report the discovery of three reef-associated representatives of this group — Labidocera bataviae A. Scott, 1909; L. pavo Giesbrecht, 1889; and Labidocera sp. — living residential in coral reefs. We (1) document the presence of Labidocera spp. for two separate coral reefs on two expeditions to Papua New Guinea, (2) describe their migration behavior and substrate preference, and (3) quantify the effects of benthic reef community composition on their abundance. All life stages of Labidocera spp. were 43 to 94 times more abundant at the reef sites compared to offshore sites. Although pontellids are generally considered non-migrators, Labidocera spp. showed discernible diel vertical migrations: living in reef substrates during the day, emerging into the water column at night (sometimes more than once), and returning to the substrate at dawn. Labidocera spp. showed a pronounced substrate preference for coral rubble, microalgae, and turf, over branching coral, massive boulder coral, and sand.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-07-02
    Description: More than 2,500 species of copepods (Class Maxillopoda; Subclass Copepoda) occur in the marine planktonic environment. The exceptional morphological conservation of the group, with numerous sibling species groups, makes the identification of species challenging, even for expert taxonomists. Molecular approaches to species identification have allowed rapid detection, discrimination, and identification of species based on DNA sequencing of single specimens and environmental samples. Despite the recent development of diverse genetic and genomic markers, the barcode region of the mitochondrial cytochrome c oxidase subunit I (COI) gene remains a useful and – in some cases – unequaled diagnostic character for species-level identification of copepods. This study reports 800 new barcode sequences for 63 copepod species not included in any previous study and examines the reliability and resolution of diverse statistical approaches to species identification based upon a dataset of 1,381 barcode sequences for 195 copepod species. We explore the impact of missing data (i.e., species not represented in the barcode database) on the accuracy and reliability of species identifications. Among the tested approaches, the best close match analysis resulted in accurate identification of all individuals to species, with no errors (false positives), and out-performed automated tree-based or BLAST based analyses. This comparative analysis yields new understanding of the strengths and weaknesses of DNA barcoding and confirms the value of DNA barcodes for species identification of copepods, including both individual specimens and bulk samples. Continued integrative morphological-molecular taxonomic analysis is needed to produce a taxonomically-comprehensive database of barcode sequences for all species of marine copepods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    BIOMED CENTRAL LTD
    In:  EPIC3Frontiers in Zoology, BIOMED CENTRAL LTD, 11(19), ISSN: 1742-9994
    Publication Date: 2017-06-26
    Description: Introduction: Many marine planktonic crustaceans such as copepods have been considered as widespread organisms. However, the growing evidence for cryptic and pseudo-cryptic speciation has emphasized the need of re-evaluating the status of copepod species complexes in molecular and morphological studies to get a clearer picture about pelagic marine species as evolutionary units and their distributions. This study analyses the molecular diversity of the ecologically important Paracalanus parvus species complex. Its seven currently recognized species are abundant and also often dominant in marine coastal regions worldwide from temperate to tropical oceans. Results: COI and Cytochrome b sequences of 160 specimens of the Paracalanus parvus complex from all oceans were obtained. Furthermore, 42 COI sequences from GenBank were added for the genetic analyses. Thirteen distinct molecular operational taxonomic units (MOTU) and two single sequences were revealed with cladistic analyses (Maximum Likelihood, Bayesian Inference), of which seven were identical with results from species delimitation methods (barcode gaps, ABDG, GMYC, Rosenberg’s P(AB)). In total, 10 to 12 putative species were detected and could be placed in three categories: (1) temperate geographically isolated, (2) warm-temperate to tropical wider spread and (3) circumglobal warm-water species. Conclusions: The present study provides evidence of cryptic or pseudocryptic speciation in the Paracalanus parvus complex. One major insight is that the species Paracalanus parvus s.s. is not panmictic, but may be restricted in its distribution to the northeastern Atlantic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...